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We analyze the cost-effectiveness of electric utility ratepayer–funded pro-
grams to promote demand-side management (DSM) and energy efficiency (EE)
investments. We specify a model that relates electricity demand to previous EE
DSM spending, energy prices, income, weather, and other demand factors. In
contrast to previous studies, we allow EE DSM spending to have a potential long-
term demand effect and explicitly address possible endogeneity in spending. We
find that current period EE DSM expenditures reduce electricity demand and that
this effect persists for a number of years. Our findings suggest that ratepayer
funded DSM expenditures between 1992 and 2006 produced a central estimate
of 0.9 percent savings in electricity consumption over that time period and a 1.8
percent savings over all years. These energy savings came at an expected average
cost to utilities of roughly 5 cents per kWh saved when future savings are dis-
counted at a 5 percent rate.
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1. INTRODUCTION

Utility programs to reduce demand for electricity have been in existence
since the late 1970s following the two energy crises of that decade. Several pieces
of federal legislation passed in the late 1970s encouraged utilities to develop
programs to promote energy efficiency and reduce demand in peak periods, and
the Public Utilities Regulatory Policies Act of 1978 required state Public Utility
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1. In 1993, total DSM spending, including spending on load management, was about $3.7 billion
dollars.

2. See Gillingham, Newell and Palmer (2006) for more information on the ranges of estimates of
cost per kWh saved across different studies.

3. Authors’ calculation based on the ratio of total energy savings from DSM programs reported
in Table 8.13 and total energy demand reported in Table 8.1 of the Annual Energy Review 2008 (EIA
2008). Reid (2009) breaks down these numbers by utility and finds that the top 10 utilities in terms
of savings all reported cumulative effects of energy efficiency programs in excess of 10 percent

4. Calculation based on electricity consumption savings to commercial and residential customers
in 2005 attributable to cumulative utility and public agency programs reported in table 6 of CEC
(2008) divided by total 2005 sales reported in Form 1.1 (CEC 2008).

Commissions to take account of these programs in setting consumer rates for
electricity. Programs took off in the early 1990s with U.S. utilities spending a
total of nearly $2.0 billion dollars (2007$) on energy efficiency demand-side
management (DSM) programs in 1993.1 After 1993, the peak year of utility
spending on DSM according to the Energy Information Administration (EIA),
electric utility spending on energy conservation and DSM started to decline as
electricity markets were being restructured to introduce more competition, and
expenditures on efficiency programs were reduced or eliminated as utilities sought
to reduce costs. In some states, the move to competition was accompanied by the
establishment of wires charges, known as system benefit charges or public benefit
charges, which were used to fund continued investment in energy efficiency.

After nearly three decades of experience with DSM, a good deal of
controversy remains over how effective these programs have been in reducing
electricity consumption and at what cost those consumption reductions have been
obtained. Estimates of the cost-effectiveness, or cost per kWh saved, of past DSM
programs range from just below one cent per kWh saved to more than 20 cents.2

Estimates of energy savings have been derived using a variety of different meth-
ods and are subject to varying degrees of uncertainty, depending on the ability of
program evaluators to account for human behavior in engineering models that
estimate energy savings, including free-riding participants and countervailing
spillovers to nonparticipants. Nationwide, DSM programs have only a modest
impact on electricity demand. According to the 2008 Annual Energy Review (EIA
2008), utilities reported that DSM programs produced energy savings in 2007
equal to approximately 1.8 percent of total electricity demand.3 Savings estimates
vary somewhat across the states. Data from the California Energy Commission
(CEC 2008) suggests that current and past utility DSM programs across the state
saved 1.8 percent of commercial and residential electricity consumption or 1.2
percent of total electricity consumption in 2005.4 Efficiency Vermont reports
higher incremental savings from their efficiency programs in 2008 of 2.5 percent
of total electricity sales in the state (Efficiency Vermont 2008).

With increasing electricity prices, concerns about the continued reliabil-
ity of electricity supply, and growing interest in limiting emissions of greenhouse



Cost-Effectiveness of Electricity Energy Efficiency Programs / 65

Copyright � 2012 by the IAEE. All rights reserved.

5. The Regional Greenhouse Gas Initiative (RGGI) states see investment in DSM as a way to
help offset the impacts of the regional climate policy on electricity consumers and potentially to
reduce the likelihood that power imports from non–RGGI states will increase under the program
(RGGI 2008). As of the end of 2010, the second full year of the RGGI program, over 50 percent of
RGGI CO2 allowance revenues across the ten RGGI states collected over the life of the program were
used to fund energy efficiency (RGGI 2011).

gases that contribute to climate change, utilities, policymakers, and environmental
groups have shown renewed interest in policies and programs to promote energy
efficiency. In 2006, a group representing utilities, state regulators, environmen-
talists, industry, and federal government employees, coordinated by the U.S. En-
vironmental Protection Agency and the U.S. Department of Energy (DOE), pub-
lished the National Action Plan for Energy Efficiency, which includes a call for
more funding of cost-effective energy efficiency. Several states are adopting reg-
ulatory rules, including revenue decoupling and financial performance incentives,
to reward the utilities in their jurisdictions that invest in cost-effective energy
efficiency programs. Over 20 states, including Maryland and New York, have
announced specific goals to reduce electricity consumption (or consumption per
capita) relative to current levels by a target year in the future. Exactly how these
goals will be achieved is yet to be determined, but several of the states partici-
pating in the Regional Greenhouse Gas Initiative are using a substantial portion
of the revenue from carbon dioxide (CO2) allowance auctions to fund DSM ini-
tiatives.5 Several recent federal legislative proposals to impose a national CO2

cap-and-trade program also included provisions to encourage utilities and states
to adopt energy efficiency resource standards to help increase the role of energy
efficiency in meeting emissions reduction goals. There are also stand-alone leg-
islative proposals for an energy efficiency resource standard or to include energy
efficiency as part of a clean energy standard that requires a minimum percentage
of electricity supply to come from zero or low carbon emitting sources.

As policymakers try to identify the most effective policies and programs
to secure cost-effective energy savings, understanding the effectiveness and cost-
effectiveness of past policies and programmatic initiatives becomes particularly
important. In this paper, we analyze the effects of ratepayer–funded utility and
third-party DSM spending on electricity demand at the utility level. There are key
differences between our study and previous studies. First, our empirical method
deals with the potential endogeneity of DSM spending. We use two political
variables, League of Conservation Voters scores and Republican presidential vot-
ing percentages in each utility’s service territory as instrumental variables. Sec-
ond, our model allows for a long-term demand effect from DSM spending. To
characterize the time path of the demand effect of DSM spending, we use a
flexible function that allows the dynamic effect to increase and then decrease over
time. We estimate the model using non-linear least squares assuming no endo-
geneity and generalized method of moments with optimal instruments to account
for possible endogeneity of DSM spending. We also explore the effects on elec-
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tricity consumption of decoupling regulation and building energy efficiency
codes.

We find that current period DSM expenditures have a negative effect on
electricity demand that persists for a number of years. Based on our results using
the largest sample of utilities, our findings, which are robust across different
modeling approaches and samples, suggest that ratepayer funded DSM expen-
ditures between 1992 and 2006 produced a central estimate of 0.9 percent savings
in electricity consumption over that time period and a 1.8 percent savings over
all years at an expected average cost to utilities of roughly 5 cents per kWh saved
when future savings are discounted at 5 percent. This estimate, which is statisti-
cally significant at the 90 percent level, is lower than those of Loughran and
Kulick (2004) and at the low end of the range reported in Auffhammer, Blumstein
and Fowlie (2008). We also find that for utilities primarily located in states where
housing starts are above the mean, the presence of more stringent building costs
has a statistically significant negative effect on electricity demand.

The rest of the paper is organized as follows. Section 2 includes a review
of past empirical studies on DSM and energy efficiency. Section 3 discusses the
effects of electricity sector restructuring on DSM programs and the growing role
for programs operated by third parties. Section 4 develops the conceptual model
that underlies our calculations of predicted energy savings and their costs, and
Section 5 discusses the explanatory variables included in the empirical application
of that model. We discuss the results of the estimation and the policy implications
in section 6, and section 7 concludes.

2. EMPIRICAL ECONOMIC STUDIES OF DSM

Several empirical economic studies have evaluated the effectiveness and
cost-effectiveness of utility DSM programs focused on energy efficiency. Utility
DSM includes programs such as information programs (e.g. free energy audits),
low cost financing and financial incentives or subsidies for purchase of more
energy efficiency equipment. Much of this literature is reviewed by Gillingham,
Newell and Palmer (2006, 2009), which uncover a range of estimates of both the
effectiveness and cost-effectiveness of these programs. The studies that use ex
post econometric analysis tend to find higher costs per unit of electricity saved
than those that rely on ex ante engineering-costing methods. For example, an
early study by Joskow and Marron (1992) suggests that failure to account for free
riders, overly optimistic estimates of equipment lifetimes, and underreporting of
cost lead utilities to tend to overstate the cost-effectiveness of DSM programs by
a factor of at least two. However, a subsequent study by Parfomak and Lave
(1996) using data from a subset of utilities in the Northeast and California finds
that 99 percent of utility-reported estimates of savings from DSM are borne out
in actual metered data on energy use after controlling for the effects of prices,
weather, and economic activity. In a similar vein, Eto et al. (1996) analyze data
from 20 large utility-sponsored energy efficiency programs and develop a con-
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6. Some specifications focus on a shorter time period because of the limited availability of certain
explanatory variables.

sistent approach to measuring savings and costs. They conclude that all the pro-
grams that they analyze are cost effective conditional on the underlying assump-
tions about economic lifetimes of the identified energy savings and the level of
avoided costs of generation.

Specific estimates of cost-effectiveness from the prior literature range
from 0.9 to 25.7 cents per kWh saved. (All cost estimates are reported in 2007$.)
The estimate at the low end of this range comes from Fickett et al. (1990). Nadel
(1992) offers a range of estimates for utility programs of 2.9–7.5 cents per kWh
saved. Estimates of others tend to fall within this range. Eto et al. (2000) report
an estimate of 4.2 cents per kWh saved. Nadel and Geller (1996) report both costs
to utilities (3.0–4.7 cents per kWh saved) and costs to utilities plus consumers
(5.4–8.0 cents per kWh saved). Friedrich et al. (2009) use utility and state eval-
uations and regulatory reports on energy savings and utility costs for 14 states to
develop an average estimate of the average cost to utilities of 2.5 cents per kWh
saved. Gillingham et al. (2004) use DSM expenditures by utilities and annual
savings reported by utilities to the EIA to derive a cost-effectiveness estimate of
3.9 cents per kWh saved in the year 2000.

The cost estimates at the high end of the range come from a more recent
study by Loughran and Kulick (2004; hereafter L&K). L&K analyze the effects
of changes in DSM expenditures on changes in electricity sales using utility-level
panel data over the time period from 1992 through 19996. They find that the DSM
programs are less effective and less cost-effective than utility-reported data would
suggest, with their estimates of costs ranging from 7.1 to 25.8 cents per kWh
saved coming in at between 2 and 6 times as high as utility estimates. These high
cost estimates follow primarily from their finding that the savings attributable to
DSM programs indicated by the econometrics are substantially smaller than those
directly reported by utilities, suggesting a substantial amount of free riding. How-
ever, these cost comparisons rely on the application of predicted values of per-
centage savings to mean levels of electricity demand to calculate average savings;
therefore, they do not represent an appropriately weighted national average cost.
A reevaluation of the L&K econometric results by Auffhammer, Blumstein and
Fowlie (2008; hereafter ABF), which weights savings and costs by utility size in
the construction of a mean cost-effectiveness measure, finds a substantially lower
estimate of cost per kWh than reported by L&K—a result not disputed by L&K.
In their work, ABF find DSM expenditure-weighted average cost estimates that
range from 5.1 to 14.6 cents per kWh. Their reevaluation also accounts for the
uncertainty surrounding the model predictions to construct confidence intervals
for L&K estimates of predicted energy savings from DSM, which ABF find con-
tain the utility-reported estimates. ABF point out that the appropriately weighted
L&K findings are not statistically significantly different from those reported by
the utilities in their sample.
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In another recent study, Horowitz (2007) uses a difference-in-differences
approach to determine whether changes in electricity demand and electricity in-
tensity from the pre-1992 (1977–1992) to the post-1992 (1992–2003) period for
residential, commercial, and industrial electricity users were stronger for utilities
with a strong commitment to DSM than for those with a less strong or weak
commitment. In this analysis, Horowitz uses measures of reported electricity sav-
ings attributable to DSM programs to categorize utilities. He finds that utilities
with strong DSM programs see a bigger decline in energy intensity among all
classes of customers and in total energy demand among industrial and commercial
customers. Horowitz does not look at the question of cost-effectiveness.

Our analysis uses the basic approach of L&K as a starting point. In
addition to the key differences between our method and all previous literature
discussed in previous section, our study modifies and augments L&K in several
important ways. First, we explicitly address possible endogeneity in spending
(i.e., utilities may decide to spend more on EE DSM in response to stronger
demand coming from shocks that we do not observe). Second, we augment the
data set to include data on utility DSM spending through 2006, and allow for a
long-term effect of DSM on energy demand. Third, we incorporate spending on
DSM by “third party” state agencies or independent state-chartered energy effi-
ciency agencies tasked with using revenues collected from utility ratepayers to
implement energy efficiency programs. Fourth, we explore the influence of de-
coupling regulations and the stringency of state-level residential building codes
in the region where each utility operates. Fifth, following ABF, we calculate
confidence intervals for our estimates of percentage savings and cost effective-
ness. Finally, we model percentage electricity savings as a function of average
DSM expenditures per customer, rather than the level of DSM expenditures. Nor-
malizing expenditures in this way better represents the relationship of DSM ex-
penditures and associated electricity savings across utilities of widely differing
scale. We also carefully lay out the derivation of our estimated cost-effectiveness
measures, and make a number of other improvements in estimation compared to
previous studies, as described further below.

3. EVOLUTION OF RATEPAYER-FUNDED DSM IN AN ERA OF
ELECTRICITY RESTRUCTURING

During the late 1990s, the electric utility industry was in the midst of an
important transition to greater competition. The 1992 Energy Policy Act required
the Federal Energy Regulatory Commission (FERC) to devise rules for opening
the transmission grids to independent power producers to sell electricity in the
wholesale markets under its jurisdiction. In 1996, FERC issued Orders 888 and
889 to comply with its mandate (Brennan 1998). In the wake of the opening of
transmission, several states began to give customers a choice of electricity sup-
pliers. In 1994, California became the first state to begin restructuring its utility
industry, and by 2000, a total of 23 states and the District of Columbia had passed
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Figure 1: Ratepayer-Funded Energy Efficiency Expenditures

Note: The total line in the figure adds third-party EE spending to utility EE spending only when there
are no reported utility-level expenditures. This is to avoid double-counting, as we found evidence
that third party spending through utilities is reported by utilities in the EIA form 861.

7. Note that since 2000 the spread of electricity restructuring has stalled and even reversed itself
with the California Public Utility Comission suspending retail competition in that state in March 2002
and the Virginia state legislature rejecting retail competion for Virginia electricity consumers in 2007.

8. Note that Figure 1 includes only the portion of DSM spending used for energy efficiency and
thus excludes expenditures on load management, load building, and indirect expenditures.

an electric industry restructuring policy and opened up their electricity markets
to greater competition.7

The prospect of competition and restructuring had a negative impact on
utility DSM spending as utilities started to shed all discretionary spending to be
better able to compete with new entrants that did not offer such programs. The
regulatory environment also became less favorably disposed toward DSM pro-
grams as regulators shifted emphasis away from the integrated resource planning
approach that often created incentives to invest in DSM rather than in new gen-
eration capacity. In the new regulatory environment, price caps and greater reli-
ance on markets for setting electricity prices created strong incentives for utilities
to cut costs and seek new opportunities to increase profits by increasing electricity
sales, both of which served to diminish incentives for DSM programs (Nadel and
Kushler 2000). The resulting effect on DSM expenditures over the course of the
1990s can be seen in Figure 1, which shows a substantial decline in utility DSM
spending directed toward energy efficiency between 1993 and 1998.8
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In anticipation of a decline in utility DSM spending in the wake of
electricity restructuring, a number of states established mechanisms to replace
utility programs as part of the restructuring process (Eto et al. 1998). The most
common approach has been to establish a public benefit fund to pay for DSM
and other public benefit programs, such as renewable energy promotion, research
and development, and low-income assistance, as a part of restructuring legislation
or enabling regulation (Nadel and Kushler 2000). Typically, these programs are
funded by a per-kWh wires charge on the state-regulated electricity distribution
system (Khawaja, Koss, and Hedman 2001). These wires charges are often re-
ferred to as systems benefit charges or public benefit charges.

According to the American Council for an Energy Efficient Economy
(2004), 23 states have policies encouraging or requiring public benefit energy
efficiency programs that were in effect during some portion of our data sample
period. Most of these programs are administered by the distribution utilities and
thus presumably are captured in the EIA energy efficiency spending data by util-
ity. However, in nine states—Illinois, Maine, Michigan, New Jersey, New York,
Ohio, Oregon, Vermont, and Wisconsin—these public benefit efficiency programs
are administered either by a state government entity (e.g., state energy office) or
a for-profit or nonprofit, third party administrator and therefore potentially ex-
cluded from the EIA data. We refer to these as third-party DSM programs. The
aggregate level of spending by these state-level third-party energy efficiency pro-
grams is shown by year in Figure 1, as is their effect on total national ratepayer-
funded DSM expenditures. Note that, although these programs have not fully
offset the decline in utilities’ own spending on DSM, they have partially filled
the gap.

4. EMPIRICAL MODEL AND ESTIMATION STRATEGY

Our aim in this paper is to estimate an empirical model of electricity
demand change in response to multiple factors, particularly variables related to
DSM. Based on the estimated model, we compute estimates of energy savings
from DSM, the cost-effectiveness of DSM, and confidence intervals for these
measures.

4.1 Empirical Model of Electricity Demand

We begin by specifying an aggregate electricity demand function for the
customers of each utility u in year t

Q �f (X , D , n , l , e ), (1)ut ut ut u t ut

where is aggregate electricity demand. includes a number of demandQ Xut ut

factors such as number of customers, level of economic activity, energy prices,
weather conditions, and regulatory variables influencing electricity demand. Dut
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9. In this research we initially explored a functional form that was more similar to that used by
L&K in that DSM expenditures entered in a log form, but still using DSM per customer for reasons
explained. However, we found that the results obtained using this specification were highly dependent
on the treatment of observations with zero DSM spending. Entering DSM expenditures in log form
also lead to very extreme curvature of the percent savings as a function of DSM expenditures and in
turn of the average cost function described below.

is a vector of DSM spending per customer in current and previous years, D �ut

with being the year when DSM spending began in{d , d , d , . . . , d } tut u , t–1 u,t–2 u,t 00

utility u. This vector is used to capture the fact that the amount of energy efficiency
capital owned by customers is a function of all past DSM spending by the utility
or other entity charged with implementing DSM programs on behalf of electricity
customers. is a vector of utility-level fixed effects. is a vector of year fixedn lu t

effects. captures idiosyncratic demand shocks.eut

Following the literature, we specify the following baseline function for
estimation with the dependent variable being the logarithm of electricity demand:

t– t0

ln(Q )�X ��n �g � k( j)[1–exp(cd )]�e , (2)ut ut u t � u,t– j ut
j�0

where the key variables of interest, past and current DSM spending per customer,
are in the fourth term on the right side. Because we ultimately estimate a model
to predict percentage changes in demand, we use average DSM spending per
customer (as opposed to simply the level of DSM). Otherwise, the effect on
electricity saved of an additional dollar of DSM spending would be larger for
larger utilities, which is conceptually incorrect.

Our specification allows DSM spending in all previous years to poten-
tially affect current demand. The exponential function allows the partial effect of
DSM spending on electricity demand to vary with DSM spending per customer.

gives the individual effects of current and past DSM expenditures as a func-k( j)
tion of when they were made relative to year t. We use a parametric function for

, to be specified below, to capture the time path of the demand effect fromk( j)
previous DSM spending. c gives the rate of diminishing (or increasing) returns
(Jaffe and Stavins 1995). The rate of diminishing returns increases as c gets large
in magnitude, whereas the function becomes linear (i.e., constant returns to DSM)
as c becomes closer to zero. We would expect c to be negative if increased DSM
spending lowers electricity demand. Thus, for example, when is positive andk

is negative, the function implies that DSM spending will reduce electricityc
demand, but at a decreasing rate. In one of the alternative specifications, we use
a linear function in DSM spending per customer in the fourth term on the right
side of equation (2).9

We specify a parametric function for the time effect of DSM spending
rather than estimate it non-parametrically for the following two reasons. First,
this parametric function allows DSM spending in all previous years to potentially



72 / The Energy Journal

Copyright � 2012 by the IAEE. All rights reserved.

10. In choosing the number of years to construct the proxy for DSM spending before 1989, we
face the trade-off between a good proxy (favoring using a larger number of years) and losing data in
demand estimation. Sensitivity analysis shows that setting t0 to be 1992 or 1993 gives similar results.

affect current demand. Our estimation results using parametric specifications as
well as initial estimates using nonparametric specifications suggest that the effect
of DSM spending could have long lags. Second, the parametric specification
avoids dropping data in the early years as the nonparametric specification does.
This is important empirically given our relatively small sample size.

We use a two-parameter function for to allow a flexible shape fork( j)
the long term effect of DSM spending: the effect could be decreasing over time
or have a single peak at a point in time. In the baseline specification, we use the
probability density function of a Gamma distribution:

g g –12 1k( j,g ,g )�g ( j�1) exp[–g ( j�1)]/C(g ), (3)1 2 1 2 1

where is a Gamma function. The two parameters and will be estimatedC(g ) g g1 1 2

together with other parameters in the demand function. In an alternative specifi-
cation, we use the probability density function of a Weibull distribution and obtain
similar results.

The demand model of equation (2) is specified as if EE DSM spending
for all previous years were available. As described in section 5, our data start in
1989, but many utilities engaged in demand side management programs long
before that and systematic data on DSM spending before 1989 are not available.
We modify equation (2) to address this issue. Specifically, we use a flexible func-
tion of DSM spending in early years in our data (i.e., 1989–1991) to control for
the demand effect of DSM spending that occurred before our data period begins:

t– t0

ln(Q )�X ��n �g � k( j)[1–exp(cd )]�f (d ,s )�e , (4)ut ut u t � u,t– j u,t –1 t ut0
j�0

where is chosen to be 1992, implying equation (4) is estimated for electricityt0

demand beginning from 1992.10 The control function is a high-orderf (d ,s )u,t –1 t0

polynomial function of average DSM spending during 1989–1991 and the time
trend variable to capture the effect of DSM spending prior to 1989 on electricity
demand after 1992. is the average DSM spending of utility u from 1989du,t –10

to 1991 and is the inverse of the number of years since 1991. In the baselinest

estimation, we include nine interaction terms between the polynomials of du,t –10

(up to the 3rd order) and the polynomials of the time trend variable (up to the
3rd order). We also conduct robustness checks using different specifications of
this control function. Our results show that without controlling for the effect of
early DSM expenditures (i.e., not including the control function), the demand
effect of recent DSM spending would be substantially overestimated.
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4.2 Estimation Strategy

Following L&K and many other energy demand studies, we estimate a
model in first-difference form, thereby controlling for unobserved utility-specific
attributes that could otherwise lead to omitted variable bias. Thus the equation
that we bring to the data is given by:

t– t0Qutln �DX ��Dl � k(g ,g , j )[1–exp(cd )] –ut t � 1 2 u,t– j� �Q j�0u,t–1 (5)
t– t –10

k(g ,g , j )[1–exp(cd )]�Df (d ,s )�De ,� 1 2 u,t–1– j u,t –1 t ut0
j�0

Because and enter the equation nonlinearly, this equation can beg ,g c1 2

estimated using the nonlinear least squares method. A potential concern in esti-
mating this equation is that DSM spending could be correlated with unobserved
demand shocks. For example, utilities may decide to spend more on EE DSM in
response to stronger demand coming from shocks that we do not observe (and
captured by ). Ignoring this correlation, the nonlinear least squares methodeut

would under-estimate the effect of DSM spending on demand. On the other hand,
the bias could go in the opposite direction if utilities with more effective programs,
and thus lower demand, tend to spend more. To our knowledge, the endogeneity
issue has not been addressed in previous empirical literature on DSM.

We address the endogeneity concern in two ways, both within the frame-
work of nonlinear Generalized Method of Moments (GMM). First, because we
specify the dynamic path of the DSM effect on demand in a parametric form with
only two parameters, the third term in equation (5) has only three parameters
( and ), but fifteen DSM spending variables because we use DSM data fromg ,g c1 2

1992 through 2006. If we assume that current demand shocks are uncorrelated
with DSM spending that occurred in the far past, we can employ GMM to estimate
the model where lagged DSM spending (as well as their polynomials), denoted
by , can be used as instruments to form moment conditions. Given the non-LDut

linear nature of the model, we construct feasible optimal instruments to improve
the efficiency of the GMM estimator. Denoting all the parameters in the model
as and exogenous variables as , Chamberlain (1987) shows that the optimalh Z
instruments in our context are given by . Following� E[log(Q / Q )⎪z,h]h ut u,t–1

Newey and McFadden (1994), we construct optimal instruments using polyno-
mials of in an iterative procedure. The procedure starts by using the exog-LDut

enous variables themselves to obtain initial parameter estimates andĥ
, which is then regressed on including polynomials ofˆ� E[log(Q / Q )⎪z,h] Zh ut u,t–1

. The fitted values are then used as instruments in the next iteration.LDut

Identification in the previous approach arises from the parametric func-
tional form assumption on and no excluded exogenous variables are needed.k( j )
In the second approach, we add additional exclusion restrictions based on two
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11. L&K and ABF report alternative summary statistics for aggregating savings and costs across
utilities and time, including unweighted means. We agree with ABF that the alternative unweighted
measures are misleading and we therefore do not report them here.

political economy variables: the average League of Conservative Voters (LCV)
environmental scores of federal legislators who represent voters in the utility’s
service territory, and the percentage of voters who voted for the Republican can-
didate in the last political election. We construct both variables for the area served
by each utility. In estimation, these two variables and their polynomials are used
to construct optimal instruments in an iterative procedure outlined above. Our
results show that both approaches produce similar results.

4.3 Examining DSM Effectiveness and Cost-Effectiveness

Next we show how equation (4), once the parameters have been esti-
mated, can be transformed to yield expressions to examine both the effectiveness
and cost-effectiveness of DSM spending. We measure effectiveness by using two
metrics: percentage electricity savings across all utilities from 1992–2006 attrib-
utable to DSM spending during this period; and electricity savings from 1992 on
due to DSM spending during 1992–2006 as a percentage of electricity consump-
tion during 1992 to 2006.11 Different from the first measure, the second measure
also includes the demand effect after the data period as a result of EE DSM
spending that occurred during the data period. The first measure can be computed
directly from the data based on parameter estimates while the second one neces-
sitates an assumption about the level of electricity demand after 2006.

The estimated percentage change at utility u in year t (before 2007) due
to current and past DSM spending from 1992 on, is given:%Sut

t t� 0

1–exp k( j )[1–exp(cd )]� u,t– j� �
j�0Q� (D �0)–Q (D )ut ut ut ut%S � � , (6)t tut � 0Q (D )ut ut exp k( j )[1–exp(cd )]� u,t– j� �

j�0

where is electricity consumption at utility u in year t. Negative impliesQ (D ) cut ut

that the percentage change is negative and that consumption is reduced by DSM
spending. Note that the electricity savings in any given year are the result of DSM
expenditures from year to the current year.t0

To calculate an aggregate estimate of electricity savings from DSM
across utilities and time, it is necessary to translate percentage savings into a level
of savings (in kWh) by multiplying the percentage savings by total electricity
consumption.

S �%S *Q . (7)ut ut ut
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Equation (7) gives a predicted energy savings from DSM for each observation in
the sample. With that, we can compute an overall percentage savings estimate by
summing energy savings across all utilities and years (1992–2006), and dividing
by the sum of electricity consumption.

S�� ut
u t%S� , t� [1992,2006]. (8)

Q�� ut
u t

Equation (8) provides the first measure of program effectiveness. The second
measure is electricity savings from 1992 on (including savings that persist beyond
the data period) due to DSM spending during 1992–2006 as a percentage of
electricity consumption 1992–2006. The difference between these two measures
lies in the numerator and the common denominator permits comparison. We use
the estimated and the function to predict the cumulative percentage savingsc k( j )
at utility u after 2006 attributable to DSM expenditures during 1992 and 2006 at
that utility. The percentage saving at utility u in year k (k�2006) resulting from
DSM spending during the data period is given by:

Q� (D �0)–Q (D )uk u,2006 uk u,2006%S �uk Q (D )uk u,2006

t– t0

1–exp k(k)[1–exp(cd )]� u,t– j� �
j�0

� , ∀ k�2006. (9)t– t0

exp k(k)[1–exp(cd )]� u,t– j� �
j�0

is a vector of annual DSM spending from 1992 to 2006. To predict totalDu,2006

electricity saved in a future year, we assume that electricity consumption is flat
after 2006 for each utility.

S �%S *Q . (10)uk uk u,2006

We add these future savings to the numerator in equation (8) and obtain the second
measure:

T

S� � ut
u t�1992%S�� , (11)2006

Qut� �
u t�1992

where T is the last year when 2006 DSM spending ceases to have any demand
effect. Our estimates suggest that the effect is practically zero after 20 years so
we do not add future savings after 2026.
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12. Recent estimates place the weighted average cost of capital for electric utilities at about 5%
and the cost of equity at about 7% (Damodaran 2006).

13. Analysts have raised some concerns about the quality of the utility level data on energy
efficiency collected on EIA-861, including missing values for expenditures in some years for large
utilities and a lack of consistency across utilities in what gets reported for both expenditures and
savings measures, particularly the annual savings (Horowitz 2004, York and Kushler 2005, Reid 2009,
Horowitz 2010). Note that we do not use the EIA-861 energy savings data for our econometric
analysis. Early in the course of this research, we also attempted to identify and correct shortcomings
in the expenditures data, drawing on other sources including ACEEE and the Consortium for Energy
Efficiency that have sought to fill in missing expenditures in certain years or collect their own data.
However, we were unable to use those data because they did not have a sufficient degree of detail
and time coverage necessary for our analysis. So we proceeded solely with the EIA data. Nonetheless,
we did carefully check the EIA data and eliminated a number of outliers, including observations with
year-to-year growth in demand or total customers in excess of 30 percent (due to mergers, acquisitions,
and other factors) and utilities with no residential customers. Also, there appears to be inconsistent
reporting of zeros and missing values for DSM energy efficiency expenditures in the 861 data de-
pending on the year. We do some consistency tests across the different components of DSM expen-
ditures to determine when reported zeros are likely missing values and when reported missing values
are likely to be zeros. When energy efficiency expenditure is reported as zero and total DSM expen-

To examine the cost-effectiveness of DSM spending, we calculate spend-
ing (in cents) per kWh saved. Denoting the number of customers in utility u at
time t by Nut , we divide total DSM spending across all utilities and years by total
electricity savings:

2006

d *N� � ut ut
u t�1992AC� . (12)T

Sut� �
u t�1992

When the energy savings from DSM spending last a long time as our
empirical results show, one should discount future benefits in order to compare
them to upfront DSM spending. Discounting makes a bigger difference in the
cost-effectiveness analysis when the energy savings accrue over a longer time
period. We calculate average cost per kWh saved (AC) using alternative discount
rates: 0 percent, 3 percent, 5 percent, and 7 percent. A higher discount rate implies
smaller total discounted electricity savings and hence a larger average cost esti-
mate. We take the estimates based on 5 percent discount rate as the focal point
of discussion, as this is in the middle of the 3 percent and 7 percent rate typically
used for government policy analysis.12

5. ESTIMATION VARIABLES AND DATA SOURCES

Our data set is a panel of annual utility-level data from EIA Form 861
Annual Electric Power Industry Report and other sources over the 18-year period
1989–2006.13 The observations in the estimation sample start in 1992 because we
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Table 1: Summary Statistics

Variables Mean Median Std. Dev. Min Max

First difference of Log(electricity demand) 0.031 0.028 0.045 –0.290 0.297
Electricity demand (billion KWH) 7.98 1.08 16.02 0.16 103.65
Electricity demand per customer (MWH) 24.02 21.49 10.75 8.21 96.52
DSM spending ($ millions) 4.71 0.06 16.82 0.00 230.20
DSM spending per customer ($) 9.41 1.19 18.08 0.00 191.85
Number of customers (thousands) 325 53 678 4 5,121
Population (thousands) 9,139 6,452 8,072 574 36,200
State GDP ($ billions) 362 256 346 18 1788
Housing starts (thousands) 48 31 52 2 265
Electricity price (cents per KWH) 8.80 8.12 2.37 4.90 15.87
Natural gas price (cents per Mcf) 10.30 9.79 2.91 5.35 22.12
Fuel oil price (cents per gallon) 130.43 119.49 35.84 73.40 275.31
Climate 1,647 1,454 825 369 3,937
Indicator: most stringent building codes 0.028 0.000 0.165 0.000 1.000
Indicator: more stringent building codes 0.797 1.000 0.402 0.000 1.000
Indicator: building codes exist 0.852 1.000 0.355 0.000 1.000
Mean DSM spending per customer 89–91 ($) 7.40 0.81 13.18 0.00 64.82

Number of observations 3,326
Number of utilities 307

Notes: Dollars are inflation-adjusted to 2007. Mcf denotes thousand cubic feet.

ditures is non-zero, if the sum of the components of DSM, including energy efficiency, load man-
agement, load building (for those years when it is reported) and indirect costs, is less than the total
DSM then we convert the zero expenditures to missing. Alternatively, if EE DSM is reported as
missing and total DSM is reported as zero, then we treat the energy efficiency component of DSM
expenditures as zero. While we believe there may be measurement error associated with the energy
efficiency DSM expenditures reported to EIA, we do not believe it introduces a systematic bias to
our analysis.

14. Under Form EIA-861, utilities with sales to both ultimate consumers and resale less than
120,000 MWh were not required to report energy efficiency expenditures through 1997. The threshold
became 150,000 MWh in 1998; we therefore exclude all utilities with less than 150,000 MWh. Further,
following L&K, we do not include utilities in Alaska, the District of Columbia, Hawaii, or the U.S.
territories. We also drop observations that have missing values for DSM expenditures during the
estimation process.

use DSM spending in 1989–1991 to control for spending prior to our data period.
Thus, our panel covers a period roughly twice as long as that of L&K. Summary
statistics appear in Table 1. All dollar values are converted from nominal to real
using the gross domestic product (GDP) deflator.

Our main sample has 3,326 observations from 307 utilities. The original
data set from which our main sample is drawn includes all utilities in the lower
48 states that meet the minimum size criteria for reporting DSM expenditures
throughout the sample period. We exclude utilities with no residential customers.
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15. Note that utilities did not report expenditures for energy efficiency separately until 1992, so
we use the energy efficiency share of total DSM expenditures by utility in 1992 to impute values for
energy efficiency–related expenditures in prior years to use as lagged measures of energy efficiency
DSM expenditures.

16. From a variety of sources, we were able to collect data on energy efficiency expenditures for
third-party programs for only eight states and these data are reported in Appendix Table A-2, which
shows the annual DSM expenditures by each program. When constructing these data, we did our best
to match the categories of expenditures included in the energy efficiency portion of DSM spending
reported by utilities to the expenditures reported by third parties, but such parsing of the third-party
data into the portion that is directly comparable to the EIA definition of energy efficiency spending
was not always possible. To the extent that we over-represent the relevant category of energy effi-
ciency spending, that would tend to bias our cost-effectiveness estimates upward.We were unable to
obtain data on energy efficiency spending by the public benefit fund administrator in Ohio and thus
we exclude the Ohio utilities from our estimation for the years 2000 and beyond.

17. A linear regression of utility-reported DSM expenditures on third-party DSM expenditures
shared to the utility level yields a coefficient of 1, suggesting that these third-party expenditures may
be incorporated into utility reports.

The original data set has many observations with missing values for DSM spend-
ing even after our meticulous efforts to find them from various sources.14 Because
our empirical model allows all previous DSM spending to potentially affect cur-
rent demand, whenever encountering a missing DSM spending, we have to drop
all subsequent observations for the same utility.

5.1 Electricity Demand and DSM Expenditures

Data on utility-level electricity sales, DSM spending, and number of
customers are from Form EIA-861. Like L&K, we use as our measure of utility
spending on energy efficiency DSM that portion of DSM expenditures that util-
ities report as being devoted specifically to energy efficiency, as opposed to load
management, load building, or indirect costs.15 To be as comprehensive as pos-
sible in our treatment of ratepayer-funded DSM energy efficiency programs, we
also include third-party state-level DSM programs that have come into being post-
restructuring.16 We share state-level third-party DSM expenditures to the utility
level using each utility’s share of total customers within the state. Given that
comparisons of third-party DSM expenditure data shared to the utility and utility-
reported DSM expenditures suggest that there is some overlap, we only include
third-party expenditures in the analysis when the utility-reported DSM expendi-
tures are zero or missing.17 As noted in section 4, we normalized DSM expen-
ditures by number of customers at the utility in order to control for size. Finally,
note that conducting the analysis at the utility level means that we are able to
pick up the effects of intra-utility spillovers that would result when customers
who do not participate in a program actually make investments in efficient equip-
ment on their own and thus reduce their electricity consumption at no cost to the
program.
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18. Another approach is lost revenue recovery, which allows utilities to raise prices to compensate
them for revenues from sales that utilities can show were lost as a result of DSM programs. Unfor-
tunately, data on the presence and form of state rules governing lost revenue recovery are not available
for several of the years in our sample.

19. Jaffe and Stavins (1995) examined the effectiveness of building codes using a cross-sectional
data set, finding no significant effect of building codes on energy demand in their analysis. Aroon-
ruengsawat et al. (2009) find that building codes decreased per capital residential electricity con-
sumption by 3–5 % in 2006. Jacobsen and Kotchen (2010) find that the introduction of more stringent
building codes in Gainesville, Florida reduced demand for electricity by about 4%. Costa and Kahn
(2009) find that building codes affect residential electricity consumption in California after 1983 but
not before.

20. In our sample, we find a small positive correlation of building code stringency and DSM
expenditures per customer.

21. In some cases, however, such attribution may not be so far off. A significant issue with building
codes is compliance, and for some utilities in some years, a portion of DSM expenditures may be
devoted to improving compliance with residential building codes. In these cases DSM could increase
the potential for building codes to yield savings.

5.2 Decoupling Regulation

To test whether state-level revenue decoupling regulation leads to re-
duced demand, we include a categorical variable indicating its presence.18 Be-
cause of the way electricity is priced in most places, many of the fixed costs of
delivering electricity are recovered in per-kWh charges. This means that programs
that are effective at reducing electricity consumption could also reduce revenues
that are used to recover fixed costs, potentially creating losses for the utilities that
offer DSM programs. In some states, regulators have allowed the utilities that
they regulate to recover the relevant portion of lost revenues to eliminate disin-
centives for offering DSM programs. One such approach is revenue decoupling,
so named because it decouples the portion of utility revenues dedicated to recov-
ering fixed distribution costs from the amount of electricity that the utility sells.
Note that because our data end in 2006, we do not incorporate the recent dramatic
increase in the adoption of decoupling regulation at the state level.

5.3 Building Energy Efficiency Codes

Previous studies of DSM have not examined the effects of building codes
on electricity demand.19 As a result, if building code stringency is positively
correlated with average DSM expenditures per customer,20 a portion of the energy
savings caused by building codes may be attributed to DSM spending, which
would result in an underestimate of the cost per kWh savings.21 We address this
issue by including a series of categorical variables to characterize the stringency
of building codes within each state during each year. We obtained data on the
evolution of energy building codes from the Building Codes Assistance Project
(www.bcap-energy.org) and the DOE Building Energy Codes Program
(www.energycodes.gov). See Figure 2 for a map of building code stringency as



80 / The Energy Journal

Copyright � 2012 by the IAEE. All rights reserved.

Figure 2: Stringency of Building Codes in 2007

22. We also obtained data on energy efficiency codes for commercial buildings. However, we
found a high correlation between the residential and commercial building code stringency, and so
chose to focus on a single measure of stringency.

of 2007, which shows the western states, such as California and Washington, with
the most stringent building codes and Midwestern states with typically less strin-
gent codes.

We began by creating six categories of building code stringency, which,
in order of decreasing stringency, are: (a) code met or exceeded the 2006 Inter-
national Energy Conservation Code (IECC) or equivalent and was mandatory
statewide; (b) code met 2003 IECC or equivalent and was mandatory statewide;
(c) code met the 1998–2001 IECC or equivalent and was mandatory statewide;
(d) code preceded the 1998 IECC or equivalent and was mandatory statewide;
(e) significant adoptions in jurisdictions, but not mandatory statewide; and (f)
none of the aforementioned conditions hold and no significant adoptions of build-
ing codes in the state. After speaking with a building codes expert, we further
consolidated these into four categories to represent more substantial differences
in stringency: BC1 indicates the stringency is (a) above; BC2indicates the strin-
gency is (a)–(d) above; BC3 indicates the stringency is (a)–(e) above; the fourth
(excluded) category is category (f).22 Thus, the variables are structured to indicate
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23. Electricity prices can vary substantially across utlities within a state and our price data will
not reflect this intra-state variation in price levels where it exists However, given the potential for
endogeneity introduced by using utlity level price data, and the fact that our analysis focuses on
changes in price and not price levels, we believe that using state level prices for electricity and other
fuels is appropriate.

24. Although more than 99 percent of building air cooling is powered by electricity, the role of
electricity in space heating is much smaller (between 2 percent and 18 percent) and varies substantially
across regions of the country. To better represent the limited role of electricity in delivering space
heating, we weight our heating degree day variable by the share of electricity in space heating for
residential and commercial buildings by region of the country. The shares are from the Residential
Energy Consumption survey and Commercial Building Energy Consumption survey for available
years, and are interpolated for intervening years. We found this adjustment to be important empirically.

25. See http://www.lcv.org/scorecard/past-scorecards/.

the incremental effect of building codes compared to the next most-stringent
category.

5.4 Energy Prices and Other Variables

The annual average price of electricity by state also comes from Form
EIA-861.23 Residential natural gas and fuel oil prices by state also come from
EIA. We compiled state-level data on several other variables from a variety of
sources. Annual state-level GDP comes from the Bureau of Economic Analysis.
Data on population-weighted heating and cooling degree days by state are from
the National Oceanic and Atmospheric Administration (NOAA).These data are
summed to construct a single climate variable.24 Data on state-level housing starts
are from Mitsubishi Bank (Bank of Tokyo-Mitsubishi UFJ, Ltd.). Some utilities
operate in multiple states and separately report sales of electricity for each of the
states in which they operate. We sum these sales to a utility-level total for our
dependent variable. This is necessary because the energy efficiency DSM expen-
ditures from Form EIA 861 are only available at the utility level and not broken
down by state. For variables that are only available at the state level (i.e., energy
prices, GDP, and heating and cooling degree days), we use the value associated
with the state in which the utility does the majority of its business.

We obtained the League of Conservation Voters (LCV) scores for each
member of the U.S. House of Representatives directly from National Environ-
mental Scorecards for 1991–2006 from the LCV website.25 The National Envi-
ronmental Scorecard grades representatives on a scale of 0–100 based on how
they vote on key environmental legislation (e.g., legislation related to energy,
global warming, environmental health and safety protections, public lands and
wildlife conservation and spending for environmental programs). We use GIS to
match congressional districts to utility service territories tracking changes in con-
gressional district geography over time. When a utility service territory overlaps
multiple congressional districts, we use area weights to construct a utility-service-
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26. We chose area-weighting because although representatives are elected by the population of
their district, an LCV score is assigned to a single Congressional representative who is representative
of each component of an entire Congressional District area equally.

27. Where a service territory spans multiple counties the number of Republican votes cast were
summed across the component counties and then divided by the total number of presidential votes
cast across the component counties. When a county is split among multiple utility service territories,
we performed an area weighted calculation, assigned a weight to each utility-county component
relative to the total county size, and multiplied that by the number of voters in the county.

28. These nine interactions are .2 3 2 2 2 3 2 3 2 3 3 3d*s, d *s, d *s, d*s , d *s , d *s , d*s , d *s , d *s

territory level LCV index for each year.26 The Republican voting share variable
comes from county-level information on the percentage of the votes for the Re-
publican candidate in each presidential election from 1988 through 2004. These
county-level data were mapped to the utility service territory using GIS infor-
mation.27 For years between presidential elections we used the information from
the most recent election.

6. ESTIMATION AND RESULTS

We first estimate equation (5) using nonlinear least squares assuming no
endogeneity in DSM spending, as has been done in previous studies in this lit-
erature. To address the issue of possible endogeneity, we then estimate equation
(5) using nonlinear GMM as discussed in section 4. A variety of robustness checks
are conducted to check the sensitivity of the findings with respect to assumptions
on demand specification, parametric assumptions on the time path the effects of
past DSM spending, treatment of missing DSM data, as well as controlling for
DSM spending before 1992. Based on the estimated parameters, we examine the
effectiveness and cost-effectiveness of DSM spending. The results appear in Ta-
bles 2–6. In the following, we first present coefficient estimates and we then
discuss their implications for program effectiveness and cost-effectiveness.

6.1 Coefficient Estimates

Table 2 presents coefficient estimates and their standard errors from es-
timating equation (5). The first-difference equation includes year dummies and
the control function to capture the demand effect of EE DSM spending before
1992. As discussed in Section 4.1, the control function includes nine interaction
terms between the polynomials of the average level of DSM spending during
1989–1991 and the polynomials of the time trend variable.28 The results under
model 1 are obtained from nonlinear least squares (NLS). The results under model
2 are from GMM where we use the polynomials (up to 5th order) of the lagged
spending (the 4th lags and those earlier) to construct the optimal instrument

as described in Section 4.2. Model 3 includes LCV� E[log(Q / Q )⎪z,h]h ut u,t–1

scores and percentage of Republican presidential votes in the last election in each
utility service territory as additional variables to construct optimal instruments.
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Table 2: Estimation Results from the Baseline Model

Model 1: NLS Model 2: GMM Model 3: GMM

Variables Para. S.E. Para. S.E. Para. S.E.

DSM spending per customer (c) –0.0016 0.0010 –0.0015 0.0010 –0.0016 0.0010
in Gamma probability density functiong1 8.4155 5.7705 8.8819 6.1876 8.3271 5.7275

in Gamma probability density functiong2 0.7768 0.5972 0.8282 0.6409 0.7672 0.5930

Log(number of customers) 0.3617 0.0453 0.3617 0.0454 0.3617 0.0454
Log(population) 0.4573 0.0921 0.4574 0.0921 0.4573 0.0921
Log(gross state product) 0.2003 0.0436 0.2004 0.0436 0.2002 0.0436
Log(house starts) 0.0381 0.0080 0.0381 0.0080 0.0381 0.0080
Log(electricity price) –0.4660 0.1905 –0.4655 0.1908 –0.4661 0.1909
Log(electricity price) squared 0.0911 0.0406 0.0910 0.0407 0.0911 0.0407
Log(natural gas price) 0.1229 0.0589 0.1228 0.0588 0.1229 0.0589
Log(natural gas price) squared –0.0349 0.0143 –0.0349 0.0143 –0.0349 0.0143
Log(fuel oil price) 0.3451 0.2213 0.3460 0.2213 0.3449 0.2212
Log(fuel oil price) squared –0.0344 0.0232 –0.0345 0.0232 –0.0344 0.0232
Log(climate) 0.0962 0.0066 0.0962 0.0066 0.0962 0.0066
Dummy for most stringent bldg codes 0.1061 0.0586 0.1054 0.0586 0.1062 0.0586
Dummy for more stringent bldg codes –0.0953 0.0928 –0.0953 0.0928 –0.0953 0.0928
Dummy for bldg codes exist 0.1981 0.0861 0.1982 0.0861 0.1981 0.0861
Log(house starts)*most stringent codes –0.0091 0.0050 –0.0091 0.0050 –0.0091 0.0050
Log(house starts)*more stringent codes 0.0102 0.0093 0.0102 0.0093 0.0102 0.0093
Log(house start)*existing codes –0.0203 0.0086 –0.0203 0.0086 –0.0203 0.0086
Year dummies (14) Yes Yes Yes
Control function for early DSM Yes Yes Yes

Notes: The number of observations is 3,326. Results are for equation (4). The dependent variable is
log(electricity demand). The first set of results is from NLS while the second and third sets are from GMM
using optimal instruments in an iterative procedure. Model 2 does not include exclusion restrictions in
constructing optimal instruments while model 3 includes LCV scores as well as the percentage of Republican
votes in each utility’s service area in the last presidential election. Parameter estimates in bold are significant
at the 10% level.

The parameter estimates across the three models are very close, sug-
gesting that current DSM spending is not correlated with current demand shocks.
This similarity may reflect that DSM spending is determined before the current
demand shocks are realized. If utilities base their DSM spending on (projected)
future demand conditions, their predictions of future demand conditions can be
captured well by the observed demand factors used in our model. Basing current
DSM spending on expectations regarding future demand growth is consistent with
an integrated planning model approach in which utilities see energy efficiency
investments as an alternative to building new power plants in order to balance
demand and supply in the future (Gillingham et al. 2006). This finding also holds
in other demand specifications to be discussed in the next section. In all of the
models, we find a negative estimate for the c coefficient. Given that ink( j )
equation (4) is always positive, a negative c implies a negative relationship be-
tween electricity demand and DSM spending per customer. The magnitude of the
c coefficient, which gives the rate at which diminishing returns set in, is quite
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small, implying that the diminishing return is not strong at least for the spending
levels observed in the data. Since our model is nonlinear in parameters, the de-
mand effect of DSM spending is determined by c and other parameters in the
model.

The next two parameters ( ) characterize the function (pdf of ag ,g1 2

Gamma distribution) used to capture the long-term effect of DSM spending. De-
pending on parameter values, the function could be strictly decreasing or non-
monotonic with a single peak. The top panel of Figure 3 plots the function itself
and 95% confidence intervals based on estimates of ( ) from model 1 (NLS)g ,g1 2

while the bottom panel is based on results from model 3 (GMM with exclusion
restrictions). The confidence interval is constructed base on the delta method. We
also plot an arbitrary path within the 95% confidence band in each plot to illustrate
one alternative time path that is consistent with the confidence interval around
the estimated function. For example, the function itself in both plots peaks around
t�9 (t�1 for current year) and based on the function itself, one might conclude
that DSM spending has the strongest demand effect after eight years. However,
this interpretation ignores the fact that the confidence band around the function
is quite wide, especially around the peak point, suggesting that the peak point
may be hard to isolate based on the data and model we have. In fact, the confi-
dence bands suggest that the alternative path given in the plots could also be a
potential time-path for the demand effect of DSM spending.

We believe that there are two important messages from the plots. First,
DSM spending has a long-lasting demand effect. The plots suggest that the de-
mand effect in year 15 is still statistically different from zero at the 5 percent
confidence level. This is in contrast with the modeling assumption used in pre-
vious studies that DSM spending only affects demand within the first few years.
Many DSM programs promote energy-efficient investments by customers (in-
cluding residential, commercial and industrial users). These investments are often
in the form of subsidies for the purchase of energy-efficient durable (consumption
or capital) goods or for building retrofits such as insulation or new windows. The
reduction in electricity demand resulting from these types of long-lived invest-
ments could last for a long time.

Second, the demand effect of DSM spending could be small initially and
not achieve its maximum until a few years later. For example, programs that
subsidize energy audits may not see immediate results as it may take time for
customers to take up all the recommendations from these programs (e.g., making
energy-efficient investments). To the extent that these recommendations could
require a large financial commitment, consumers may not act upon them imme-
diately. This may be especially true for industrial and commercial customers if
the investment involves significant capital turnover. Also, according to Gilling-
ham et al. (2004), by the 1990s utilities were increasingly focusing their DSM
spending on market transformation programs that sought to transform markets
for energy using equipment such that the efficient option becomes the norm. These
types of programs involved coordinated information, training, demonstration and
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Figure 3: Long-term Effect of DSM Spending from the Baseline Model

Notes: the top graph is based on results from NLS (model 1 in table 2) and the bottom graph is based
on results from GMM (model 3 in table 2).
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29. The parameter estimates on electricity price suffer from the potential endogeneity problem
and is better interpreted as an indication of association rather than causation.

30. The partial effect of having most stringent building codes on electricity demand is given by
(0.1061–0.0953�0.1981)�(–0.0091�0.0102–0.0203)*log(housing starts). It is equal to –0.0184
at the mean value of housing starts (138,340) in the areas with most stringent building codes.

financing campaigns and their effectiveness could very well build over time as
suggested by our results. While it is impossible to know from our EE DSM
expenditure data exactly what types of programs utilities were funding during the
years for which we have data, our results are consistent with some of the general
trends in program evolution identified by Gillingham et al. (2004).

The remaining parameter estimates are intuitively signed and in most
cases are statistically significant. The relationships between electricity demand
and indicators of the size of the market (number of customers and population)
and overall economic condition (gross state product and housing starts) are posi-
tive and significant across the different models. We include prices of electricity,
natural gas and fuel oil (in logarithm) and their quadratic terms to allow for more
flexible elasticity patterns. Electricity demand is significantly negatively associ-
ated with the price of electricity (elasticity of –0.27 at the mean level of electricity
price), and is positively associated with the prices of natural gas and fuel oil
(elasticity of 0.04 and 0.18 at the mean level of prices).29 Electricity demand is
also positively associated with increases in the climate variable (i.e., heating/
cooling degree days) and the size of this effect is fairly consistent across the
different models at an elasticity of about 0.1. In all models, we also include
building code stringency dummies (base group: no building codes) and their in-
teractions with housing starts. Recall from section 5 that the dummy for having
building codes is one if there is any type of building codes in the area (regardless
of stringency) while the two dummies for more stringent building codes are one
for all areas that have building codes above a certain threshold. The coefficient
estimates suggests that having the most stringent building codes reduces electric-
ity demand and the reduction effect is stronger in areas with more housing starts.30

6.2 Percentage Savings and Average Cost-Effectiveness

We use the estimated coefficients in Table 2 to examine the effectiveness
and cost-effectiveness of DSM spending. We use equation (8) to calculate the
percentage electricity savings occurred from 1992 to 2006 from DSM spending
in the same period. We present the results for the three models in Table 3, based
on the corresponding parameter estimates in Table 2. Noting that the results are
very close across models, we focus on the results from NLS in our discussion.

We find that DSM expenditures in the data period, from 1992 through
2006, produce weighted average energy savings during the data period of just
below 1 percent. When savings in future years are taken into account and divided
by demand during the data period (when the DSM expenditures were incurred)
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Table 3: Effectiveness and Cost-Effectiveness from Baseline Model

Model 1:
NSL

Model 2:
GMM

Model 3:
GMM

Est. S.E. Est. S.E. Est. S.E.

Demand effect of DSM spending (data
period)

–0.009 0.005 –0.009 0.005 –0.009 0.005

Demand effect of DSM spending (total
effect)

–0.018 0.011 –0.017 0.011 –0.018 0.011

Cost-effectiveness (no discounting)(cents
per kwh saved)

–3.0 1.8 –3.2 1.9 –3.0 1.8

Cost-effectiveness using 3% discount rate –4.1 2.4 –4.3 2.6 –4.1 2.4
Cost-effectiveness using 5% discount rate –5.0 2.9 –5.2 3.1 –5.0 2.9
Cost-effectiveness using 7% discount rate –6.1 3.5 –6.3 3.7 –6.0 3.5

Notes: The first row, the demand effect of DSM spending during data period, shows the effect of DSM
spending from 1992 to 2006 on total electricity demand during the same period. The second row gives the
effect of DSM spending from 1992 to 2006 on total electricity demand over all future periods (up to 20
years after the spending), assuming the demand after 2007 to be the same as in 2006. The cost-effectiveness
is calculated based on total DSM spending from 1992 and 2006 and total electricity saving resulted from it.
The four sets of cost-effectiveness estimates are based on four different discount rates: 0%, 3%, 5% and 7%.
All standard errors are obtained using the delta method. All estimates are significant at the 10% level, but
not the 5% level.

the total effect is a 1.8 percent reduction in demand. Assuming a discount rate of
5 percent, the cost of these energy saving is estimated at 5 cents per kWh saved
with a 90 percent confidence interval that goes from nearly 0.3 to 9.8 cents per
kWh. Because our demand estimation suggests that the demand effect from DSM
spending lasts a long time, the average cost estimates can be quite different under
different discount rates: it is estimated to be 3 cents per kWh under no discounting
and 6 cents per kWh when future savings are discounted using a 7 percent dis-
count rate.

We can use our model to compare predictions of savings with the actual
savings data reported by the utilities to EIA in the 861 database. Utilities report
to EIA the cumulative savings in each year that result from all current and past
spending. Given that our model relies on EE DSM spending data that start in
1992 and our finding that savings persist for several years, the most reasonable
comparison is one for a later year in the database. In 2006 there were only 50
utilities that had non-missing values of energy savings for all relevant categories
of customers and for those 50 utilities the total reported savings in 2006 was 4.2
percent of total sales in the same year. Our model predicts total savings for those
same 50 utilities of 2.6 percent with a standard error 1.4 percent and thus the
reported savings are within the 90 percent confidence interval of our estimate.
Note that these 50 utilities appear to be slightly more successful at producing
savings as the average cumulative savings in 2006 for all 126 utilities in our data
set is only 2.1 percent with a standard error of 1.1 percent.
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The expected average cost estimate of 5 cents per kWh for utility costs
is less than the national average retail price of electricity in 2006 of 9.1 cents per
kWh across all sectors (EIA 2009). Recall, however, that these are costs only for
the utility itself. The fact that the average electricity price is higher than the
estimated utility cost per kWh saved suggests that these programs may have
produced zero-cost or low-cost CO2 emissions reductions, depending on the mag-
nitude of the costs to utility customers of implementing energy efficiency mea-
sures. Although the marginal cost of electricity—which is not generally equal to
the electricity price—is perhaps a better estimate of the benefits of energy savings
from DSM, estimates of marginal cost can vary substantially depending on what
margin is being considered. In the short run, the marginal cost of generation can
vary substantially by time of day. For example, in December 2006, the hourly
marginal cost of generation ranged from roughly 2 cents per kWh to 27 cents per
kWh depending on location and time of day (PJM 2006). In the longer run,
marginal generation costs are given by the levelized cost of new investments,
which vary by technology and fuel and, according to the National Academy of
Sciences (2009), range from roughly 8–9 cents per kWh for new baseload fossil
capacity to a little over 13 cents per kWh for a new gas turbine peaker.

Accounting for customer costs is also challenging. Earlier research (Na-
del and Geller 1996; Joskow and Marron 1992) suggests that the sum of customer
costs and utility costs is roughly 1.7 times utility costs alone. Because this ratio
is based on such a small number of somewhat dated studies, we do not think it
is appropriate to use this ratio to estimate customer costs for our results. None-
theless, it suggests that the total average cost of a kWh saved is still below the
price of electricity, suggesting that energy efficiency programs can be a cost-
effective way to reduce CO2 emissions.

Our estimate is in the range of some more recent estimates of the cost-
effectiveness of energy efficiency programs. For example, PG&E (2010) finds
that its energy efficiency programs in 2009 produced savings at an average cost
to the utility of 4.5 cents per kWh saved.

6.3 Robustness Analysis

To check the sensitivity of our findings to modeling assumptions, we
conduct a variety of robustness checks. The first robustness check is with respect
to the specification of the model. The baseline specification given by equation
(4) assumes that DSM spending enters the demand equation nonlinearly, which
is to capture the possibility that the demand reduction effect could have a dimin-
ishing return. In an alternative specification, we let the DSM spending variable
enter the demand equation linearly:

t– t0

ln(Q )�X ��n �g �c k( j )d �f (d ,s )�e . (13)ut ut u t � u,t– j u,t –1 t ut0
j�0
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31. We note that we also estimate the model without including the control function. Because this
approach would attribute the demand effect of DSM spending that occurred before 1992 to expen-
ditures in later years, the results show that the demand effect would be substantially overestimated:
the estimated percentage savings during 1992–2006 is 3.2 percent and the cost per kWh saved is less
than one cent compared to 0.9 percent and five cents in the baseline model.

The estimation results based on NLS and GMM with exclusion restrictions for
this specification are presented in Table 4. NLS and GMM results are very similar
to the baseline specification, again suggesting that DSM spending is not correlated
with idiosyncratic demand shocks. The parameter estimates from this alternative
specification are very close to those from the baseline specification shown in Table
2. This is consistent with the fact that is estimated to be very close to zero inc
the baseline specification, implying a near linear relationship between DSM vari-
ables and the dependent variable. The percentage electricity savings and average
cost estimates from the alternative specification, shown in panel 1 in Table 6, are
also similar to those in the baseline specification. The average cost per kWh saved
is estimated to be 4.8 cents with a discount rate of 5 percent, compared to 5.0
cents in the baseline specification.

The second robustness check is with respect to missing data in the sam-
ple. Because we have to drop all the observations subsequent to a missing one
for the same utility, this implies that the number of utilities used in the analysis
is smaller over time. To check how this could affect estimation results, we use
the same demand function specification as the baseline but focus on utilities that
have at least 10 observations in the data and this gives rise to 3,014 instead of
3,326 observations. The parameter estimates are close to those in the baseline
model. Panel 2 of Table 6 provides the estimates of percentage electricity savings
and average cost, all of which are similar to the baseline estimates as well.

In the third robustness check, we investigate the sensitivity of the find-
ings to the control function used to capture the demand effect of DSM spending
that occurred before 1989, the first year of our data. Recall that we use a poly-
nomial function of average DSM spending between 1989 and 1991 and the time
trend as the control function. The baseline specification includes interaction terms
between 3rd-degree polynomials of the average annual level of DSM spending
during 1989–1991 and those of the time trend variable (9 interactions in total))
while in this robustness check, we include interaction terms of 4th-degree poly-
nomials of each of the two variables (16 interactions). Estimation results from
this specification, shown in the first part of Table 5 and the third panel of Table
6, are still in line with those in the baseline model.31 The fourth alternative spec-
ification employs a different parameter function to capture the long-term demand
effect of DSM spending. Instead of the probability density function of the Gamma
distribution in the baseline model, we use a Weibull distribution which is also a
two-parameter function and allows flexible pattern of the time path. The parameter
estimates are presented in Table 5. Based on the estimates for , we plot theg ,g1 2

function and the 95% confidence interval in Figure 4. The two plots correspond
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Table 6: Effectiveness and Cost-Effectiveness from Alternative
Specifications

NSL GMM

Est. S.E. Est. S.E.

Panel 1: Robustness check 1: log-linear specification
Demand effect of DSM spending (data period) –0.010 0.005 –0.010 0.005
Demand effect of DSM spending (total effect) –0.019 0.010 –0.019 0.010
Cost-effectiveness no discounting (cents per kwh saved) –2.9 1.5 –2.9 1.6
Cost-effectiveness using 3% discount rate –3.9 2.1 –3.9 2.1
Cost-effectiveness using 5% discount rate –4.8 2.5 –4.8 2.5
Cost-effectiveness using 7% discount rate –5.8 3.1 –5.8 3.1

Panel 2: Robustness check 2: a subsample
Demand effect of DSM spending (data period) –0.009 0.005 –0.009 0.005
Demand effect of DSM spending (total effect) –0.017 0.011 –0.016 0.011
Cost-effectiveness no discounting (cents per kwh saved) –3.2 2.0 –3.3 2.1
Cost-effectiveness using 3% discount rate –4.4 2.7 –4.5 2.8
Cost-effectiveness using 5% discount rate –5.3 3.2 –5.4 3.4
Cost-effectiveness using 7% discount rate –6.4 3.9 –6.6 4.1

Panel 3: Robustness check 3: different control function
Demand effect of DSM spending (data period) –0.010 0.005 –0.010 0.005
Demand effect of DSM spending (total effect) –0.021 0.012 –0.021 0.012
Cost-effectiveness no discounting (cents per kwh saved) –2.6 1.6 –2.7 1.5
Cost-effectiveness using 3% discount rate –3.7 2.1 –3.7 2.1
Cost-effectiveness using 5% discount rate –4.5 2.6 –4.5 2.6
Cost-effectiveness using 7% discount rate –5.4 3.1 –5.5 3.1

Panel 4: Robustness check 4: Weibull distribution
Demand effect of DSM spending (data period) –0.011 0.006 –0.011 0.007
Demand effect of DSM spending (total effect) –0.022 0.012 –0.023 0.014
Cost-effectiveness no discount (cents per kwh saved) –2.5 1.4 –2.4 1.5
Cost-effectiveness using 3% discount rate –3.4 1.8 –3.1 1.5
Cost-effectiveness using 5% discount rate –4.1 2.2 –3.8 1.8
Cost-effectiveness using 7% discount rate –4.9 2.7 –4.6 2.1

to estimation results from NLS and GMM with exclusion restriction. The two
salient features observed in Figure 3 for the baseline specification are still present
in Figure 4: DSM spending could have a long-lasting effect and the effect could
be small initially and reach its maximal strength a few years later. Panel 4 of
Table 6 shows the percentage saving and average cost estimates. The average
cost decreases from 5 cents in the baseline to 4 cents in this specification. Nev-
ertheless, given the standard errors for these two estimates, the difference would
not be statistically significant.

The specific nature of the individual EE DSM activities included in these
utility and state programs is not discernible in our data, and there can be sub-
stantial variability across programs. While some DSM programs are implemented
with a direct goal of reducing consumption within utility service territories, others
are carried out as less intensive pilot programs or customer service activities (e.g.,
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Figure 4: Long-term Effect of DSM Spending using Weibull Distribution

Notes: the top graph is based on results from NLS (robustness 4 in table 5) and the bottom graph is
based on results from GMM (robustness 4 in table 5).
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32. We thank one of the referees for calling this issue to our attention.

information programs).32 If one expects that the programs under the second cate-
gory have a smaller effect on energy saving (per dollar of expenditure), our results
from combining all types of programs together would under-estimate the effect
of demand reduction from the programs in the first category (i.e., more intensive
programs explicitly motivated to achieve high energy savings).

To examine this issue, we conduct two additional robustness checks
where we drop “less committed” utilities that have positive DSM spending but
whose spending per customer is below the 10th percentile or the 20th percentile
of the DSM spending distribution (among the utilities who carried out DSM
spending). The results from these two robustness checks are very similar to those
obtained for the baseline model, and are available upon request. For example,
demand reduction from DSM spending during the data period is –0.92% from
Model 1 (NLS in Table 2) while the effect is estimated at –0.93% in the first
robustness check and –0.89% in the second robustness check, all being significant
at the 10% level. The central cost-effectiveness estimate from these more limited
samples actually increases somewhat, although the change is not statistically sig-
nificant from the baseline model. This is also consistent with the fact that in the
baseline model, (the rate of diminishing returns) is estimated to be very closec
to zero in the baseline specification, implying a near linear relationship between
DSM per customer and log(electricity consumption) for the data we have.

To investigate whether revenue decoupling strengthens the demand-re-
ducing effect of DSM spending, we add an interaction term between DSM spend-
ing and the decoupling dummy in the baseline specification. The demand equation
becomes:

t– t0

ln(Q )�X ��n �g � k( j )[1–exp(c dut ut u t � 1 u,t– j
j�0

�c decoup d )]�f (d ,s )�e . (15)2 u,t– j u,t– j u,t –1 t ut0

Decoup is a dummy variable equal to 1 if revenue decoupling policy is in effect
for the utility. The estimates for and from NLS are –0.0006 (0.0007) andc c1 2

–0.0034 (0.0029) with standard errors in parenthesis. The estimate suggestsc2

that the demand reduction effect is stronger among utilities that have revenue
decoupling regulation. However, it is not statistically significant, likely due to the
fact that only 7 percent of the observations are affected by this policy and the
policy status does not change often over time for the same utility during our data
period (more and more utilities are subject to this policy after 2006, the end of
our data period). All the other parameter estimates (not reported to save space)
are close to those in the baseline model. Moreover, NLS and GMM give similar
results as well. The percentage savings estimates based on equations (8) and (11)
are 0.9 percent (0.5) and 1.5 percent (1.0) from NLS. The average cost per kWh
saved is 6 cents with a standard error of 4 with a discount rate of 5 percent.
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7. CONCLUSION

The cost-effectiveness of utility DSM programs is a subject of consid-
erable interest and study. Most of the past efforts to study cost-effectiveness take
utility reports of electricity savings attributable to DSM programs as given, often
adjusting by a pre-established net-to-gross factor to account for free riders net of
spillover effects. In this analysis, we take a different approach that relies on
econometric techniques to estimate how DSM expenditures affect electricity de-
mand, controlling for other demand drivers, such as changes in price, income and
weather. We build on earlier work by expanding the dataset and including addi-
tional important explanatory variables. More importantly, we develop a carefully
motivated empirical model to capture the long-term demand effect of DSM ex-
penditure. We explicitly address the potential endogeneity problem of DSM ex-
penditure using nonlinear GMM, which has not been done previously.

Our main results suggest that, over the 15-year period covered by this
analysis, ratepayer–funded DSM expenditures produced a central estimate of 0.9
percent savings in electricity consumption within the data period and 1.8 percent
savings including savings that occur beyond the data period. The average cost to
utilities of electricity savings achieved under these programs depends importantly
on the discount rate employed to calculate the present discounted value of future
electricity savings. With a discount rate of 5 percent, the average cost is 5 cents
per kWh saved, with a 90 percent confidence interval that goes from 0.3 cents to
nearly 10 cents per kWh saved. Higher discount rates yield higher mean estimates
of average cost. Our findings are robust to many alternative assumptions about
model structure and the structural model used to incorporate the effects of lagged
DSM spending. Our model suggests that over the range of DSM spending data
in our sample, returns to increased EE DSM spending are roughly constant. De-
coupling regulation appears to strengthen the demand-reducing effects of EE
DSM spending. Our results do provide evidence that for utilities primarily located
in states where housing starts are above the mean, the presence of more stringent
building costs has a statistically significant negative effect on electricity demand.

In future work, it would be useful to discern lessons about the relative
effectiveness of different types of energy efficiency programs (e.g. information
programs versus rebate programs versus loan programs) or the relative effective-
ness of programs targeted at different classes of customers (residential, commer-
cial, industrial), both of which would require more detailed data on EE DSM
spending by program type and type of customer. In recent years energy efficiency
regulatory policy has focused on questions of who is best suited to deliver energy
savings through efficiency investments at the point of use and what types of
regulatory incentives are necessary to encourage utilities to embrace end-use en-
ergy efficiency. States have opted either to charge the electric utilities with pro-
moting energy efficiency or have chosen to establish a separate state-run or state-
chartered entity (e.g., Efficiency Maine Trust, Efficiency Vermont or NYSERDA)
to operate its ratepayer funded energy efficiency programs.
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On the regulatory side, state utility regulators have had a renewed interest
in developing regulatory mechanisms such as revenue decoupling and incentive
mechanisms to reward successful energy efficiency programs to help overcome
utility incentives to maximize revenues and profits through greater electricity
sales. As experience with these different structural and regulatory institutions
accumulates, we hope the necessary data will be collected to enable us and other
researchers to identify the implications of these different institutional arrange-
ments and regulatory approaches for the performance of programs that use rate-
payer funds and other public dollars to invest in greater end-use energy efficiency.

Utility energy efficiency programs are taking center stage in ongoing
discussions about U.S. energy policy and how best to combat climate change.
Studies such as the recent McKinsey Study (Granade et al. 2009) on the potential
for saving energy at low or negative cost are part of this debate. However, missing
from studies like McKinsey’s are the specific policy measures that would be
required to bring about the investments and behavioral changes necessary to re-
alize these energy savings and estimates of the extent to which the costs of im-
plementing these policies might differ from the engineering costs. The present
study offers additional evidence about how effective past utility and third-party
state-level programs have been in reducing electricity demand, and how much
they have cost per unit of electricity saved.
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APPENDIX

Table A-1: Third-Party DSM Expenditures: State, Year, and Data Source
(millions of 2007$)

State 1998 1999 2000 2001 2002 2003 2004 2005 2006 Administrator

Illinois 0.00 0.00 0.00 0.00 0.00 3.21 3.12 0.93 1.06 Department of
Commerce and
Economic
Opportunity(Energy
Efficiency Trust Fund)

Maine 0.00 0.00 0.00 0.00 0.00 2.80 5.11 8.26 9.33 Efficiency Maine

Michigan 0.00 0.00 0.00 0.00 1.12 2.51 3.66 3.70 2.89 Michigan Public
Service Commission
(The Low-Income and
Energy Efficiency
Fund)

New
Jersey

0.00 0.00 0.00 66.19 107.25 99.44 101.52 90.53 81.78 New Jersey Board of
Public Utilities (New
Jersey Clean Energy
Collaborative)

New York 7.86 12.05 30.54 80.34 137.77 160.32 152.87 150.86 155.01 New York State Energy
Research and
Development Authority

Oregon 0.00 0.00 0.00 0.00 8.41 27.46 43.89 54.49 46.69 Energy Trust of Oregon

Vermont 0.00 0.00 6.71 10.30 12.63 14.59 15.31 16.01 15.24 Efficiency Vermont

Wisconsin 0.00 0.00 0.00 0.00 29.07 50.65 42.62 41.48 40.84 Focus on Energy

Total 7.86 12.05 37.25 156.83 296.24 360.98 368.11 366.26 352.84
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