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Abstract

Global warming induces significant changes in the global water cycle. Leveraging rich spatial

and temporal variation in precipitation and sectoral bilateral trade between countries, this study

examines the impact of water resources on international trade. The findings indicate that the

abundance of water resources in the origin country relative to the destination country repre-

sents a comparative advantage. A 1% increase in relative precipitation per capita between the

origin and destination leads to a 0.07% increase in exports. The impact is stronger for water-

intensive industries and between trading partners with large differences in water endowment.

We provide evidence on three underlying channels: productivity, trade structure, and transport.

Long-term projections show that the aggregate gains and losses in exports due to changes in

precipitation during 2080-2099 would amount to $660 and -$280 billion among winners and

losers, respectively, relative to the 2015-2019 levels. The results highlight that the changing

water resources play a critical role in shaping the impact of climate change on trade and the

economy.
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1 Introduction

Water resources are distributed unevenly worldwide, and the rapid reduction in these resources

presents a significant threat to public health, political stability, and the environment (IPCC, 2022).

As global warming continues to alter the global water cycle, the existing disparities in water dis-

tribution and the resulting economic crises are expected to worsen (World Bank, 2016). Changes

in local water resources can be transmitted across regions through the trading of commodities that

depend on water as an input. Virtual water trade has allowed countries with limited water resources

to rely on the water supplies of other nations to meet their domestic needs. Despite the substan-

tial growth of international trade in recent decades and the clear spatial redistribution of water

resources caused by climate change, there is a lack of empirical evidence at the granular level

regarding how water resources impact international trade in the context of a changing climate.

This paper aims to fill the gap in the literature by quantifying the impact of the spatial re-

distribution of water resources on international trade at a global scale. To that end, we compile

rich datasets including bilateral trade, precipitation and other weather conditions, input usages,

production, port logistics performance as well as future climate and population projections. Our

empirical framework employs a gravity equation to examine trade flows while allowing for the

Heckscher-Ohlin (HO) style interactions. Specifically, we investigate whether water-abundant

countries export more in the sectors with higher water intensities. The identification leverages

the variation in precipitation as the key driver for water resources. In addition, our model exploits

the nature of sectoral bilateral trade flows between countries by incorporating a rich set of fixed

effects.

Our regression analysis yields two key findings. First, relative precipitation abundance between

the origin and the destination countries represents a comparative advantage. Relative precipitation

abundance is measured as the exporter’s precipitation per capita divided by the importer’s precipi-

tation per capita. On average, a 10-percent increase in relative precipitation leads to a 0.7-percent

increase in trade flows. Second, the impact concentrates in water intensive industries such as

food and livestock production as well as crude materials extraction. For example, the elasticity
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of the precipitation impact on agricultural trade is 0.3, more than four times larger than the av-

erage across industries. Additionally, the heterogeneous analyses reveal that the impact of water

resources on trade is stronger between trading partners with large differences in water endowment.

These findings are robust to a host of robustness checks including using alternative measures of

water intensities and water resources.

Our analyses reveal three mechanisms of the precipitation impact on trade: productivity, trade

structure, and transport disruption. First, the productivity mechanism encompasses the impacts of

precipitation on outputs, TFP, and TFP growth rate. We find an inverted-U relationship between

precipitation and agricultural production and a linear relationship between precipitation and indus-

trial production. When evaluated at the mean of precipitation per capita, a one-unit increase (or

220%) in precipitation per capita increases agricultural value added per capita by 28.6%, which is

about twice as large as that in industrial production. In addition, there is an inverted-U relationship

between precipitation and agricultural TFP growth rate.

Second, in terms of trade structure, we examine the impact of precipitation on the existing

number of industries that engage in trade as well as how the adjustment of these industries is

correlated with industrial water intensity. The findings indicate that when relative water resources

increase, export sectors tend to concentrate on the industries with higher levels of water intensity;

when relative water resources decrease, export sectors become more diversified to offset potential

losses in comparative advantage. The findings suggest that the lack of diversification in domestic

industries can exacerbate vulnerabilities to climate change.

Third, the transport mechanism focuses on the impact of precipitation on marine transport

by linking the precipitation at the port level with trade logistics performance index. The index

measures a port’s key logistics performances including the efficiency of the customs clearance

process and frequency with which shipments reach the consignee within the scheduled time. The

findings reveal that when droughts lower water levels, significant congestion and delays arise in

canals and ports, leading to higher transportation costs and reduced trade flows.

Based on our empirical estimates, we then quantify the overall impact of changes in precipi-
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tation on international trade during 2000-2019 and project the long-run impact at the end of the

century under different climate scenarios. We find that the distributional effects of water resources

on trade are substantial across countries and regions. Countries in Africa, South America, and

East Asia experience the largest decreases in export, while countries in North America, Europe,

and Oceania observe the largest decreases in imports during 2000-2019, relative to the average in

1995-1999. In projecting the long-run impacts, our simulations account for the role of adaptation

by allowing the effects of precipitation on trade to evolve based on the water endowment following

the recent climate impact literature (Auffhammer, 2022; Carleton et al., 2022; Heutel et al., 2021).

The simulations show that the gains in exports due to changes in precipitation are expected to grad-

ually outweigh the losses during the period of 2020-2099. In the years 2080-2099, the aggregate

gains and losses in exports are projected to be $660 and -280 billion, respectively, relative to the

average trade flows during 2015-2019.1

Our study makes two significant contributes to the literature. First, although there is a substan-

tial body of literature on the economic impacts of weather shocks and climate change (see Carleton

and Hsiang (2016) for a review), the research has largely focused on temperature, with precipita-

tion and water resources receiving less attention.2 In addition, few studies examined the effects of

water on international trade. Our work contributes to the literature by examining how the changes

in the spatial distribution of water affects trade flows while emphasizing the role of water intensity

across various sectors at a global scale.

Second, this study contributes to a large empirical literature that examines the sources of com-

parative advantage in the HO tradition. This literature has identified various factors of comparative

advantage, including the traditional factors, such as capital and skilled labor (Romalis, 2004), and a

number of non-traditional factors, such as institutions (Levchenko, 2007; Nunn, 2007; Bombardini
1Our key variable of interest is relative precipitation between trade partners. A country might experience greater

precipitation growth than certain trade partners but less precipitation growth than others. Consequently, this can lead to
an increase in exports to some partners while decreasing exports to others. Therefore, we can simultaneously observe
both the gains and losses for each country.

2Dell et al. (2012) and Burke et al. (2015b) have examined the joint effects of rainfall and temperature changes on
aggregate economic outcomes. The World Bank has also produced several reports that analyze the effects of water and
rainfall on outcomes including agricultural production, economic activity, and migration (Damania et al., 2020; Russ,
2020; Zaveri et al., 2021).
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et al., 2012) and demographic composition (Cai and Stoyanov, 2016). Our analysis demonstrates

that water represents an important source of comparative advantage in international trade. Our

study is closely related to the seminal work by Debaere (2014), which showed that countries rich

in water resources export more water-intensive products. However, our work differs from his in

three important ways. First, while Debaere (2014) relies on cross-sectional data, our analysis is

conducted in a panel setting to leverage both cross-sectional and temporal variation in precipitation

and trade flows. Second, our findings suggest that relative abundance of water resources between

the origin and destination countries, rather than a country’s own water resources as modeled in

Debaere (2014), provides a comparative advantage. Third, we provide the first set of projections to

examine the long-run impact of climate change on trade flows via changes in water resources. As

climate change would lead to substantial changes in water availability and redistribution over time,

understanding the long-run impacts is crucial for formulating mitigation and adaption policies.

The rest of the paper is organized as follows. Section 2 introduces the data and background.

Section 3 describe the empirical strategies. Section 4 presents the empirical results and robustness

tests. Section 5 explores the mechanisms. Sections 6 projects the long-run impacts. Section 7

concludes.

2 Data and Background

2.1 Data Description

This section describes the data used in the analyses. Table A1 reports the summary statistics for

the main variables.

Trade data. Bilateral trade data by industry at the country level are from the CEPII BACI.3

The database is built from data directly reported by each country to the United Nations Statistical

Division. The CEPII developed a procedure that reconciles the declarations of the exporter and the

importer, which may be different in the original data. CEPII is widely used in economic research.

The raw data are defined as items from the Harmonized System (HS) nomenclature at the 6-digit

3http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp
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level. We convert the 6-digit HS codes to the 5-digit Standard International Trade Classification

(SITC) Revision 4, following the guidance from the United Nations Statistics Division (UNSD).4

Then we aggregate the products from the SITC 5-digit level (2971 industries) to the 2-digit level

(67 industries). The data range from 1995 to 2019. In the model, we average the variables on a

5-year basis (1995-1999, 2000-2004, 2005-2009, 2010-2014 and 2015-2019). The 5-year average

allows for adjustments in bilateral trade flows (Olivero and Yotov, 2012) and also minimizes the

impact of potential measurement errors.

Precipitation data. The precipitation data are from the ERA5. The ERA5 is the latest fifth-

generation reanalysis of the global atmosphere, produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF), covering the period from 1970 to the present. The original

data are recorded at hourly intervals, but we aggregate them to the annual level, and then aver-

age annual precipitation over 5-year periods to match the frequency of the trade data. The spatial

resolution of ERA5 is 31 x 31 km. To construct precipitation data at the country level, we use

population density in each grid cell as the weight, accounting for the mismatch between water

distribution and human activities. To assess the robustness of our results, we also construct un-

weighted precipitation in our alternative specification.

Other inputs. Other inputs include labor, capital and land, following the specification in De-

baere (2014). The input data used in Debaere (2014) are cross-sectional and we obtain the panel

data from the recent version of the Penn World Table 10 (PWT). The earlier version of PWT data

is the original data source in Debaere (2014). Skilled labor stocks are measured as the ratio of

workers completing high school to those not completing high school. Physical capital stocks are

the average capital stock per worker. Land stock is measured as a country’s land area. Note that all

inputs in our following analysis are on a per capita basis, i.e., dividing the inputs by the country’s

population. The population data come from the World Bank.

Input intensities. The measures of water intensity, skill intensity, capital intensity and land

intensity come directly from Debaere (2014). Water intensity is measured as the ratio of the cost

4http://unstats.un.org/unsd/classifications/Econ

6

http://unstats.un.org/unsd/classifications/Econ


of water use over value added plus the cost of water use. Skill intensity is the wage share of

nonproduction workers to the total number of workers. Capital intensity is the sectoral capital

stock divided by the value added in each sector. Land intensity is measured as the ratio of land

use to total factor use for a sector. The products in Debaere (2014) follow IO1997-10 digit HTS

concordance. We convert the IO1997 codes to the 5-digit SITC codes and then the SITC 2-digit

level, following the guidance from the US Bureau of Economic Analysis (BEA) and UNSD. Note

that all intensities only have variations at the sector level and remain constant across countries

and over time. Such practice follows the HO literature and allows us to see how the resource

differences, instead of technology differences, affect trade.

Climate projections. The projected precipitation data for the long-run simulations are from

the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). The NEX-GDDP

dataset is derived from the general circulation models (GCM) conducted under the Coupled Model

Intercomparison Project Phase 5. The NEX-GDDP dataset provides daily downscaled projections

under RCP4.5 and RCP8.5 from 21 GCMs at a spatial resolution of 0.25 degrees from 1950 to

2100. Temporally, we sum up the daily precipitation to the annual level. Geographically, similar

to our baseline analysis, we construct the precipitation at the country level using the population

density (year 2020) in the grid of NEX-GDDP as the weight. Our main results are produced using

the median projected precipitation and climate from the 21 GCMs. We assess the uncertainty by

using the 75th and 25th of the projected precipitation from 21 GCMs.

Population projections. The future population projections are from the Shared Socioeconomic

Pathways (SSPs). The SSPs depict a set of plausible scenarios of socio-economic development

over the twenty-first century that are predicted by integrated assessment modelling (Riahi et al.,

2017). The population projection is produced by the International Institute for Applied Systems

Analysis (IIASA) in the SSP database. We obtained SSP2, SSP3 and SSP4 projections that yield

carbon emissions that fall between RCP4.5 and RCP8.5 in integrated assessment modelling exer-

cises (Carleton et al., 2022). Projected population does not differ between the RCP4.5 and RCP8.5

scenarios, as this practice does not provide additional information in our context. Population data

7



are originally in five-year increments and we use the implied annual growth rate to construct the

projected population in each future year.

Auxiliary data. The production data are from the World Bank. The variables include value

added per capita in agricultural and industrial sectors. The unit of observation is country by year

and the data range from 1999 to 2019. Agricultural TFP and its growth rate are from the U.S.

Department of Agriculture. The data range from 1995 to 2019. The data have been used in other

climate impact studies such as Ortiz-Bobea et al. (2021).

Trade logistics are assessed using the logistics performance index (LPI), which is derived from

the Logistics Performance Survey conducted by the World Bank in collaboration with private com-

panies and individuals involved in international logistics. This survey has been conducted in the

years 2007, 2010, 2012, 2014, 2016, and 2018. LPI evaluates a country’s port logistics perfor-

mance based on six dimensions: the efficiency of the customs clearance process, quality of trade

related infrastructure, ease of arranging competitively priced international shipments, quality of

logistics services, ability to track and trace consignments, and frequency with which shipments

reach the consignee within the scheduled time. The index ranges from one to five, with a higher

score representing better performance.

While the logistics evaluation is conducted at the port level, the public version of LPI varies by

country and year. Our precipitation at the national level may not capture the water resources at the

port locations. Therefore, we first identify the port locations as a point feature from the World Port

Index.5 Next, we extract the monthly precipitation depth (unit: meter) in the ERA5 grid in which

the ports locate. To merge LPI with the precipitation data, we average the precipitation at the port

level to form the country by year panel.

2.2 Data Pattern

Climate change is expected to cause increased variability and reduced predictability of precipita-

tion, resulting in the redistribution of water resources. Figure 1 shows the average annual changes

5https://msi.nga.mil/Publications/WPI
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in precipitation by country during 2000-2019 in Panel A, and the projected changes in RCP8.5 sce-

nario during 2080-2099 in Panel B. Panel A shows that relative to the annual average in 1995-1999,

precipitation dropped in most countries during 2000-2019. The magnitude is particularly large in

Africa, with a decrease of 65% relative to the baseline. Panel B shows a different pattern for the

end of the century: the areas around the Mediterranean Sea are projected to experience the largest

decrease in precipitation in 2080-2099, relative to the annual average in 2015-2019. Most countries

in Latin America and some countries in southern Africa and Oceania are projected to experience

losses in precipitation. The comparison between Panels A and B highlights that the pattern of

water redistribution changes over time: many of the countries in Asia, North America, and Africa

experienced losses in precipitation during 2000-2019 will see increases during 2080-2099, relative

to the baseline levels in 1995-1999.

The demand for water resources will increase dramatically due to the rising population and

income. Within the next 30 years, the demand for water in agriculture could rise by 50%, and

demand for urban use could increase by 80% (Flörke et al., 2018). Figure 2 illustrates the per-

centage changes in precipitation per capita by region over time. Panel A shows that, compared to

the annual average in 1995-1999, precipitation per capita decreased and fluctuated in all regions

during 2000-2019. The population growth drove the overall decreasing trends, while changes in

precipitation explained the fluctuations. The fluctuations are much larger when we examine the

precipitation pattern for each individual country. Panel B projects that the Middle East and Africa

will experience a drop in precipitation per capita by up to 50% by the end of the century under

the RCP8.5 (business-as-usual) scenario, whereas Europe and Asia will experience an increase of

about 50% relative to the annual average in 2015-2019.

The pattern of water redistribution becomes more apparent when considering changes in the

relative precipitation. The relative precipitation between regions A and B is the ratio of precipita-

tion per capita in region A relative to that in region B.6 Figure A2 shows the average annual changes

6To better understand the trends of relative precipitation over time, Figure A1 reports the changes (%) of relative
precipitation per capita over year. Relative precipitation per capita fluctuates drastically over year in 2000-2019 and
gradually increases in 2020-2099. The increasing trends of relative precipitation per capita over time is driven by the
current trade structure and population distribution. Higher proportion of current exporters (importers) is developed

9



(in %) in relative precipitation per capita by region in 2000-2019 and 2080-2099 in RCP8.5 sce-

nario. Blue colors indicate increases while red colors indicate decreases. For example, the first

grid (row 1, column 1) in Figure A2A shows that compared to the 1995-1999 baseline, the rela-

tive precipitation between “Sub-Saharan Africa” and “East Asia and Pacific” decreased by 18% in

2000-2019.

Three observations emerge from Figure A2. First, exports from “Sub-Saharan Africa” and

“Europe to Central Asia” experienced the largest decrease (-26%) in relative precipitation in 2000-

2019. Second, “Sub-Saharan Africa” and “Middle East and North Africa” experienced declines

in relative precipitation compared to most regions, while “Europe and Central Asia” and “North

America” gained in relative precipitation compared to most regions. Third, the patterns of relative

changes in precipitation between 2000-2019 and 2020-2099 in RCP8.5 scenario are quite similar,

which contrasts with the differing patterns of changes in absolute precipitation shown in Figure

1 between the two time periods. Both Figures A2A and A2B have more red colors in the upper

triangular areas and blue colors in the lower triangular areas, indicating decreasing and increasing

precipitation, respectively, in row regions relative to column regions. However, the magnitude of

the changes in Figure A2B is much larger than those in Figure A2A in absolute values.

Since water is a key input for production, relative precipitation and its induced water redis-

tribution is likely to affect international trade, particularly for the industries that are more water

dependent. As demonstrated in the HO literature, comparative advantage stems from the country-

industry matches because industries vary in the factors needed for production and countries differ

in these factor endowments. We follow the terminology in Chor (2010) and designate the inter-

action between relative precipitation and water intensity as the comparative advantage of water.

Figure A3 shows the correlation between trade and the comparative advantage of water, which

motivates our empirical specification in the next section. In Figure A3A, the y-axis denotes the

residuals from regressing logarithmic trade volume on various fixed effects in Equation (1), and

the x-axis denote the residuals from regressing comparative advantage of water on the same set of

(developing) countries whose populations are projected to grow slower (faster); higher proportion of current importers
is developing countries whose populations are projected to grow faster.
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fixed effects. The positive correlation suggests that trade volume increases as the comparative ad-

vantage of water increases. Figure A3B further demonstrate that the positive correlation between

trade volume and relative precipitation is mainly driven by industries with high water intensity.7

3 Empirical Strategy

To estimate the effect of precipitation on bilateral trade, we specify the following equation based

on the gravity model in the trade literature:

log
(
yi jkt

)
=

4

∑
h=1

(
αhRFh

i jt +βhFIh
k ∗RFh

i jt

)
+ τi j +δit +µ jt +πkt +ζik +η jk + εi jkt , (1)

where yi jkt measures the value of trade flows from exporter i to importer j in industry k during a

5-year period t. RFh
i j measures the relative factor endowment h per capita in exporter i divided by

the importer j’s factor per capita. We include four factors: precipitation, skilled labor, capital, and

land indexed by h = 1,2,3,4, respectively. Our key variable of interest is the relative precipitation

per capita. The relative measure accounts for the fact that bilateral trade flows are inherently

influenced by the determinants of both exporting and importing countries. It also captures the

intuition of comparative advantage that trade volume and trade structure remain unchanged when

the inputs and outputs in all countries change proportionally. FIh
k is the sectoral intensity of factor

h in industry k, defined as the ratio of the cost of factor h over value added plus the cost of factor

use as defined in Debaere (2014).

Since the factor endowments vary over time in our model, the interaction terms between the fac-

tor intensity and relative factor endowment capture the Rybczynski effects in the HO framework.

In the case of water, the Rybczynski theorem predicts a positive coefficient on the interaction term,

implying that water-abundant countries export more in the sectors with a high water intensity; and

that water-scarce countries import more in the sectors with a high water intensity. Coefficients αh

capture the effect of factor endowment when the corresponding intensities of water, skilled labor,

7Industries with high water intensity include the sectors of “food and live animals”, “Beverages and tobacco”,
“Crude materials, inedible” and “Mineral fuels etc”. Industries with low water intensity include the other sectors.
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capital and land in an industry equal zero.

To address the endogeneity concern due to unobservables, Equation (1) controls for a rich set

of fixed effects in various dimensions following the literature (Bombardini et al., 2012; Cai and

Stoyanov, 2016; Nunn, 2007; Romalis, 2004). The country-pair fixed effects (τi j) control for bilat-

eral time-invariant components of trade costs, including distance and various trade polices (Baier

and Bergstrand, 2007) as well as other factors proposed by the HO literature, such as contract

enforcement (Nunn, 2007) and skill distribution (Bombardini et al., 2012). The exporter-by-time

fixed effects (δit) and importer-by-time fixed effects (µ jt) control for exporter or importer specific

time varying confounders such as production costs and destination prices (Egger and Nigai, 2015;

Shapiro, 2016). Furthermore, industry-by-time fixed effects (πkt), industry-by-exporter fixed ef-

fects (ζik), and industry-by-importer fixed effects (η jk) are also included to control for industrial

specific time shocks as well as the changes in industrial structures. Our analysis uses precipitation

as a proxy for water resources. Precipitation is likely exogenous to the unobservables conditional

on this rich set of fixed effects.

Anderson and Van Wincoop (2003) emphasize the role of multilateral resistance (MR) in the

gravity model in that changes in trade costs on one bilateral route can impact trade flows on all

other routes due to relative price effects. To address the MR issue, various approaches have been

proposed, but the fixed effect models, as recommended by Head and Mayer (2014), are preferred

in the literature. As trade costs may potentially vary by industry and time, we evaluate the robust-

ness of our findings by progressively including additional fixed effects not shown in Equation (1),

including exporter-by-importer-by-time FEs, exporter-by-industry-by-time FEs, and importer-by-

industry-by-time FEs.

Our empirical framework differs from that of Debaere (2014) and previous empirical HO stud-

ies in three aspects. First, we incorporate time-varying precipitation by utilizing changes in the

hydrological cycle to capture the Rybczynski effects. Earlier HO studies usually rely on cross-

sectional data, and as such, their findings represent the long-run effects driven by factor endowment

differences, instead of changes in factor endowments.
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Second, our data structure is disaggregated at both the exporter and importer levels, whereas

previous studies utilized data at either the exporter or importer level. Our data structure not only

enables us to evaluate the comparative advantage of water, as typically done in the literature, but

also provides the opportunity to examine the trade flow matrix for each exporter-importer pair.

Such an approach offers valuable insights to policymakers, as the role of exports and imports may

differ across countries.

Third and most importantly, different from absolute water resources studied in the literature,

we utilize the relative precipitation per capita, accounting for water resources in both exporters

and importers. The relative measure is consistent with the Rybczynski theorem which highlights

the changes in exporters’ factor endowments while implicitly assuming that factor endowments in

trade partners remain unchanged. The theorem implies that when an exporter’s factor endowment

increases but an importer’s factor endowment increases to a larger extent, the factor prices of

the exporter may not decrease, and the production and export of the exporter may not increase.

While a country’s absolute water resources influence trade flows as shown in Debaere (2014), our

findings highlight the important role of relative water resources that cannot be captured by absolute

water resources. In our empirical specifications, the exporter by time fixed effects fully absorb the

variation in absolute water sources.

4 Estimation Results

4.1 Main Results

Marginal effects. Table 1 presents the estimate of the effect of relative precipitation on trade

flows from Equation (1). Column 1 starts with a specification with the fixed effects in three di-

mensions, country-pair fixed effects, industry fixed effects and time (5-year period) fixed effects.

Columns 2 and 3 gradually allow the interactions of fixed effects in the previous three dimensions,

to control for unobservables in various dimensions as discussed in the previous section. Column

4 controls for the multilateral resistance by including the exporter-by-importer-by-time fixed ef-

fects, exporter-by-industry-by-time fixed effects and importer-by-industry-by-time fixed effects.
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Overall, starting from column (2), the results are robust to adding further fixed effects. Because

specification (2) can identify the main effect of precipitation, which is necessary for predicting

the overall impacts of precipitation in the next section, we use specification (2) as the benchmark

specification.

Specification (2) shows a positive coefficient estimate for the interaction term, implying that

relative precipitation is a determinant of a country’s comparative advantage. The coefficient esti-

mates imply that a one-unit increase in relative precipitation per capita boosts trade flows by 1.4%

for an average industry with water intensity of 0.016. For the industry with the highest water inten-

sity of 0.465, a one-unit increase in relative precipitation per capita boosts trade flows by 40.5%.

The coefficient estimate on the relative precipitation variable itself is insignificant and small, sug-

gesting that changes in water resources may not have any trade impact on industries that do not use

water.

To aid interpretation, we transform the estimates into elasticities. Given the mean of the rela-

tive precipitation per capita being 4.7, the elasticity of trade with respect to relative precipitation

is 0.07, implying that a 10% increase in relative precipitation results in a 0.7% increase in trade

flows. To provide more detailed information, we report the elasticities separately for each 2-digit

SITC industry in Figure 3 evaluated at the mean of the relative precipitation level. The elasticities

are higher for industries with higher water intensities. For example, the elasticities are approx-

imately 0.3 for the industries of ”Food and live animals” and ”Crude materials, inedible, except

fuels”. For the industries of ”Beverages and tobacco” and ”Mineral fuels, etc.”, the elasticities are

approximately 0.07. However, the effects in other industries are negligible.

To our knowledge, our study is the first to estimate the elasticity of trade flows with respect to

relative precipitation per capita. The closest counterpart in the literature is the average elasticity

of exports with respect to (absolute) precipitation per capita in Debaere (2014). Our estimate of

0.07 is larger than his estimate of 0.018, but they are largely comparable in magnitude, despite

significant differences in data structure and the estimation framework.8 Conceptually, it is not

8In table A6, we also compare the trade effects of different inputs.
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clear a priori which estimate should be larger between ours and Debaere (2014). On the one

hand, the results from the cross-sectional data as in Debaere (2014) are usually interpreted as the

long-term effects, which are likely to be larger than the shorter-term impact in our study. On the

other hand, our data structure at the country-pair level is more disaggregated with an additional

dimension in importers. The substitutes among different importers for a given exporter could lead

to larger estimates in elasticities.

Overall effects. We compute the overall effect of precipitation changes on trade flows from

2000 to 2019 relative to the period of 1995-1999 by combining the estimated coefficients in Equa-

tion (1) with the actual changes in precipitation. Although our estimated elasticities are largely

comparable in magnitude to those found in Debaere (2014), the overall effects of precipitation

on trade vary significantly when we account for the varying bilateral strength in precipitation per

capita. In Debaere (2014), the model only considers the exporters and the findings imply that

the overall effects of precipitation per capita on trade would be negative as the population growth

would result in a decrease in precipitation per capita in most countries. However, if precipita-

tion per capita in all countries decreases proportionally, comparative advantage across countries as

measured by the relative precipitation would stay the same, and hence trade flows would stay the

same in our framework.9

Our empirical framework considers not only the water resources of the exporter but also those

of the importer as well as the number of importers, all of which can affect trade flows. There-

fore, the trade effect of changes in precipitation per capita within an exporter’s own country is

ambiguous a priori. To illustrate the point, let’s consider China as an exporter, which had 201 trade

partners in 2010. Even though China’s precipitation per capita decreased in 2010 relative to the

average in 1995-1999, the precipitation per capita in 92 of its trade partners decreased at a faster

rate than in China, while the precipitation per capita in 109 trade partners decreased at a slower

rate. As a result, the effect of relative precipitation on trade flows increased in some trade pairs but

9If comparative advantage cannot be adequately captured by the relative precipitation as constructed in our paper
(e.g., due to a threshold effect in production), trade patterns could still change even if the water resources change
proportionally across countries.
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decreased in others. Therefore, the overall effect of precipitation per capita on China’s trade needs

to take into account the changes in precipitation per capita in all the trading partners.

Figure 4A reports the predicted trade flows driven by the spatial changes of precipitation at the

global level during 2000-2019 relative to those in 1995-1999. The blue line indicates the aggregate

gains in exports among the exporter-importer pairs that would see an increase in export, and the

red line indicates the aggregate losses in exports among the exporter-importer pairs that would see

a decrease in export. The grey line indicate the net effects by adding the changes across these two

groups of the country pairs. Specifically, Figure 4A shows that the trade gains and losses are $3.78

and -3.87 billion in 2019, respectively, relative to the export levels in 1995-1999. In total, from

2000 to 2019, the trade gains and losses are $65 and -50 billion, respectively.

The agricultural sector is the single largest anthropogenic water user, consuming over 70% of

the available freshwater (Flörke et al., 2018). With rising population and income, it is expected

that by 2050, global demand for agricultural production will increase by 70% (FAO 2021). Our

analysis reveals that from 2000 to 2019, the total trade gains and losses in agriculture (represented

by the sector of “food and live animals”) were $16 and -13 billion, respectively, accounting for

about 25% of the overall effects of precipitation on trade.

Figure 5 reports the precipitation effects on agricultural trade from 2000 to 2019 for individual

countries. Three observations arise. First, Figure 5A shows that there is heterogenous impacts

within each continent where some countries gain while others lose. Some countries in Africa,

South America and East Asia are associated with the largest losses in export. Second, Figure 5B

depicts that the countries that observe increases in import during this period concentrate mostly in

Africa, South America and East Asia. In contrast, countries in North America, Europe and Oceania

see decreases in imports. Third, the effect may be asymmetric: countries with an increase in export

may not necessarily see a reduction in import. For example, both exports and imports dropped in

Vietnam but grew in France.

The observations of both gains and losses depicted in Figure 4A reflect the trade adjustment

owing to changes in precipitation. To further examine the adjustment, Figure A4A reports the
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estimated bilateral trade flows driven by precipitation changes in seven regions for all industries.

Looking at the bilateral trade reveals significant heterogeneity in impacts across regions. The grids

show the annual average changes in trade between two regions in 2000-2019, relative to the level

during 1995-1999. The directions of trade are from the horizontal regions, i.e., exporters, to the

vertical regions, i.e., importers. The diagonal cells represents the trade response within regions

while the non-diagonal cells between regions. Blue color is associated with positive numbers

while the red indicates negative numbers, indicating increases and decreases in trade flows, re-

spectively. Summing up all columns in each row produces the changes in overall exports from the

row regions; Summing up all rows in each column produces the changes in overall imports to the

column regions.

Two findings emerge. First, some regions gain but others lose from the changes in precipitation.

The largest gains in trade are observed between “Europe and Central Asia” (ECA) and “Middle

East and North Africa” (MENA) while the largest losses in trade are observed between “East

Asia and Pacific” (EAP) and “Europe and Central Asia” (ECA). Take the cell of “EAP - ECA” for

example, the average annual trade from EAP to ECA decreased by $181 million from 2000 to 2019,

relative to the grid’s average annual trade during 1995-1999. This implies that total exports from

EAP to ECA decreased by $3.6 billion in total during 2000-2019 due to the change of comparative

advantages in water resources.

Second, trade adjustments occur both within region and across regions. Within the region, we

take the EAP-EAP cell for example. The annual net exports from EAP to EAP increased $138

million as depicted in Figure A4A, but the annual exports within EAP increased $441 million and

decreased $303 million due to changes in trade partners and industries as shown in the correspond-

ing EAP-EAP cells in Figure A5A and A5B. To understand the changes across the regions, we

take the row of EAP for example. While the EAP region saw the largest losses in exports to ECA,

the EAP region increased exports to other five regions such that the net effects on trade in EAP is

positive. Particularly, the annual exports within EAP as well as from EAP to MENA increased by

$138 and 151 million, respectively.
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4.2 Robustness

Zero trade. Trade data at a granular level often includes a substantial number of observations

with a value of zero, as is the case in our study. Removing these observations runs the risk of

introducing sample selection bias. Furthermore, excluding trade flows with a zero value may

lead to an incomplete evaluation of the trade adjustment process. To assess the robustness of our

findings, we include the observations with zero value. The zero-trade sample is constructed by

expanding the trade flow to all possible trade partners in all years as long as a trade flow in a

country-pair is recorded in the data in any year. This data filling nearly triples the sample size to

about 9 million observations.

In Table A2, we estimate a Poisson model following Silva and Tenreyro (2006) where the

dependent variable is specified as trade flows in levels rather than in logarithms. The interpretation

of the coefficients from the Poisson model is exactly the same as under OLS. The results show

that the coefficients across different models are robust. The magnitudes are comparable with the

main results in Table 1. These results suggest that our key findings are unlikely driven by the

observations with zero value.

Alternative measures of water intensity. We examine the robustness of our findings to alter-

native measures of water intensities. The results presented in Table 1 employ the measure of direct

and blue water following the main specification in Debaere (2014). Alternatively, the measure of

water intensity could encompass both blue and green water, with blue water being composed of

surface and groundwater, and green water being stored in soil or vegetation. Additionally, water

intensity could include direct water as well as indirect water, the latter of which is calculated using

Input-Output tables and represents the water used in the intermediate inputs of a good.

Table A3 assesses the robustness of our results to different measures of water intensity follow-

ing Debaere (2014). Column 1 focuses on the direct and indirect water as well as the blue water.

Column 2 uses direct water as well as the green and blue water. Column 3 uses the direct and

indirect water as well as green and blue water. Column 4 takes the average of the previous four

measures of water intensity. The results are robust to different measures of water intensity.
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Another concern of water intensity is the underpricing of water. Recall that factor intensity

is measured as the ratio of the cost of factor use over value added plus the cost of factor use.

This practice is reasonable for labor or capital intensities when market prices exist for labor and

capital. In case of water, the usage intensity may be misleading because the observed water prices

are usually free, subsidized or systematically below its true prices such that some sectors, such as

agriculture, may be considered as non-water-intensive sectors. While we acknowledge this caveat,

we note that the water price we adopt is constructed based on the data from the U.S. as in Debaere

(2014) where the prices are less underpriced. Additionally, following the HO literature, the input

intensity does not vary over countries and what matters for identification is the ranking of water

intensities across different sectors.

Alternative measures of water resources. One concern with the measure of per capita pre-

cipitation is that population movements across countries could be affected by precipitation, water

endowments, and economic activities. If the positive effects of trade owing to increased water

resources create more jobs and attract more migrants, the per capita measures that we use will

become endogenous. Given that migrants account for only a small portion of the total population,

our results are less likely to be affected by population migration. Nevertheless, we further examine

this issue by constructing the precipitation per capita using the population in 1994, the year be-

fore our data start. This measure alleviates the concern of migration as the population measure is

pre-determined and held constant. Column 1 in Table A4 shows that the estimates remain robust.

Lastly, migration varies at the exporter-importer-year level so models with the exporter-importer-

year FE are able to absorb the effects driven by migration. Our results are robust to controlling

the exporter-importer-year FE in Column 2, suggesting that migration is not a driving factor in our

analysis.

Second, we examine the robustness of our findings to the weight we use to aggregate the

precipitation data. The raw precipitation data is at a 30 km by 30 km resolution, and we aggregated

the data to the country level, with the grid population serving as the weight. This method accounts

for the distribution of water resources and human activities within each country. In Columns 3
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and 4 of Table A4, we examine the robustness of our findings by using an unweighted version of

precipitation in models with different fixed effects. The results remain largely the same.

Third, precipitation is only one part of water resources. Countries with less precipitation may

rely on other sources of water, such as upstream transboundary water, melt glaciers and ground

water. Regarding upstream transboundary water, it may bring large measurement errors when the

country size is small. We address this concern by excluding countries that are small. A small

country refers to a country whose size is less than 10% or 25% of the country size distribution (9

or 54 thousand square kilometer). Columns 5 and 6 of Table A4 report the findings by excluding

country pairs with the size of either exporters or importers less than 10% or 25%, respectively. The

findings remain stable.

Regarding melt glaciers and ground water, we address this concern by showing that precip-

itation, as a proxy for water resource, can capture changes in melt glaciers and ground water.10

Specifically, we examine the effects of precipitation on terrestrial water changes by using the data

from the Gravity Recovery and Climate Experiment (GRACE) mission. Changes in total water

storage monitored by the GRACE satellites include changes in snow water storage, surface water

reservoir storage, soil moisture storage, and groundwater storage. Figure A7 shows that the rela-

tionship between precipitation and water resources is close to linear. On average, a one-standard-

deviation increase in precipitation per capita increases changes in terrestrial water storage by 0.9

standard deviation.11 The findings confirm that precipitation itself is the key driver of terrestrial

water changes.

Relative precipitation and absolute precipitation. We compare the effects of relative pre-

cipitation and absolute precipitation. Column 1 in Table 2 corresponds to Column 1 in Table 1

10We do not estimate the effects of relative terrestrial water changes on trade because trade flows and terrestrial water
changes are mutually determined, which leads to biased estimates. In contrast, relative precipitation is exogenous after
including a large set of fixed effects. Additionally, one of our goals is to simulate future impacts of water changes
under different climate scenarios. The future projection requires future water resources as inputs. The project changes
in terrestrial water storage are not available in the climate simulations but the projected precipitation under different
RCP scenarios are readily available.

11Note that it is not feasible to estimate the effects of relative terrestrial water changes on trade with the relative
precipitation as an instrument because terrestrial water changes contain both positive and negative values such that
relative terrestrial water changes, i.e. terrestrial water change per capita in exporter divided by terrestrial water changes
per capita in importer, is not a meaningful measurement.
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but includes the interaction term between water intensity and exporters’ precipitation per capita, as

well as the interaction term between water intensity and importers’ precipitation per capita. Our

findings generally align with our expectations, as water-abundant exporters tend to export more in

sectors with higher water intensities, while water-scarce importers tend to import less. However,

there is one exception with a positive coefficient estimate for precipitation in importers, which may

be attributed to omitted variable bias. In Column 2 of Table 2, we introduce additional fixed effects

as in Column 2 of Table 1. The coefficient estimate for the interaction term with exporters turns

negative and becomes statistically insignificant, whereas the coefficient estimates for the interac-

tion term with importers retain the same sign.

Moving to Column 3, we focus on the precipitation in exporters and fully absorb the interaction

term with importers by including importer by industry by time fixed effects. The coefficient esti-

mates for the interaction term with exporters continue to lack significance. Similarly, in Column 4,

we emphasize the precipitation in importers and absorb the interaction term with exporters through

exporter by industry by time fixed effects. The coefficient estimate for the interaction term with

importer becomes insignificant. Overall, the coefficient estimates for relative precipitation remain

stable across different specifications, whether including or excluding absolute precipitation. How-

ever, the coefficient estimates for absolute precipitation in both exporters and importers exhibit

instability. These results suggest that the relative abundance of water resources, rather than the

absolute level, serves as the key determinant of comparative advantage.

Alternative model specifications. Lastly, we examine the robustness of our results to different

model specifications and trade measurement. The results are reported in Table A5. Column 1

removes all other inputs as control variables. The findings remain robust, further suggesting that

our results are unlikely to be confounded by unobservables. Column 2 uses the level of trade (rather

than the logarithm scale) as the dependent variable. Column 3 uses the trade quantity (rather than

in monetary terms) in logarithm as the dependent variables. The qualitative results are robust to

these different specifications.
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5 Mechanisms

This section explores three mechanisms underlying the estimated impact of water resources on

trade: productivity, trade structure, and transport disruption.

5.1 Production Effects

To examine the effect of precipitation on agricultural and industrial production as well as TFP, we

regress measures of output in logarithm and TFP on precipitation per capita at the country by year

level. Table 3 reports the estimation results. Panel A reports the estimation results for agricultural

and industrial value added per capita in Columns 1-2 and Columns 3-4, respectively. Columns 1

and 3 include the linear term of precipitation per capita while Columns 2 and 4 include quadratic

terms. All regressions control for country fixed effects and year fixed effects.

Column 2 shows an inverted-U relationship between precipitation and agricultural production.

On average, a one-unit increase (or 220%) in precipitation per capita increases agricultural value

added per capita by 28.6% when evaluated at the mean of precipitation per capita. The nonlin-

ear effects are consistent with existing literature that shows that agricultural production increases

with precipitation first and then decrease (Auffhammer et al., 2006; Damania et al., 2020; Fish-

man, 2016). The nonlinearity also resonates with the destructive effects of drought and floods on

agriculture and economic growth in recent literature (Kotz et al., 2022; Lesk et al., 2016).

Columns 3-4 in Panel A shows the precipitation effects on industrial value added per capita.

While the results in Column 4 also show the inverted-U shape, the estimates of the squared term

are not significant at the conventional significance. Therefore, we use the results in Column 3 for

interpretation. A one-unit increase (220%) in precipitation per capita increases industrial value

added per capita by 14%. The different findings in Columns 2 and 4 may reflect the fact that

agriculture, as the biggest water user, usually locates close to water such that the negative effects

from flood are larger than that in the industrial sector. As a result, we do not observe significant

reduction in industrial production when the precipitation is at the right tail of its distribution. It

is also possible that the country-level analyses lacks the statistical power to identify the nonlinear
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effects for the industrial sector.

Since agriculture is the key industry for water usage, we further explore the precipitation effects

on agricultural TFP and the results are shown in Panel B in Table 3. Columns 1-2 and Columns

3-4 report the results for agricultural TFP and agricultural TFP growth rate, respectively. Columns

1-2 show that relationship between precipitation and agricultural TFP is close to linear and the

estimates are not as precise as those in Panel A. However, there is a precisely estimated inverted-

U relationship between precipitation and agricultural TFP growth rate. On average, a one-unit

increase (220%) in precipitation per capita increases agricultural TFP growth rate by 3.3 percentage

point evaluated at the mean of precipitation per capita. The marginal effect is equivalent to 0.5

standard deviation of agricultural TFP growth rate. The nonlinear effects are consistent with Ortiz-

Bobea et al. (2021) which documents that climate change has slowed down the productivity growth

in the agricultural sector.

5.2 Trade Structure

The second potential underlying channel of impact is the changes in trade structure in response

to changes in precipitation. To examine this, we conduct linear regressions with the dependent

variable being the number of industries in trade, obtained by counting the unique industry identifier

in each exporter-importer pair. Table 4 reports the estimated effects of relative precipitation per

capita on the existing number of industries that engage in trade. Columns 1 and 2 use the digit-2

SITC industries and Columns 3 and 4 use the digit-5 SITC industries. There are 67 industries for

the digit-2 SITC and 2971 industries for the digit-5 SITC. Columns 1 and 3 include exporter fixed

effects, importer fixed effects and time fixed effects, while Columns 2 and 4 include exporter-by-

time fixed effects and importer-by-time fixed effects.

The results show that an increase in relative precipitation per capita reduces the number of

industries engaged in trade. The elasticities of the number of industries in trade with respect to

relative precipitation are -0.001 and -0.02 for the 2-digit and 5-digit levels, respectively. It is in-

tuitive that the elasticity for the 5-digit level is larger than that for the 2-digit level because the
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finer industries have more substitutes. These findings are robust to the inclusion of different fixed

effects. The findings suggest that when relative precipitation increases, trade would concentrate

among fewer industries. In contrast, when relative precipitation decreases, trade become more

diversified potentially as a way to mitigate the potential losses driven by changes in comparative

advantage. Put it differently, the lack of diversification in industrial structure could exacerbate vul-

nerabilities to climate change. This underscores the need to support efforts to accelerate economic

diversification.

Next, we further explore how the adjustment of industries discussed above is correlated with

industrial water intensity. Our raw trade data are at the 5-digit level and our main analysis aggregate

the data to the 2-digit level. Correspondingly, we derive a measure of water intensity at the 2-digit

level by calculating the simple average of the water intensities from the more detailed 5-digit level.

This construction method yields the 2-digit water intensity that varies across exporters, importers,

industries, and years, solely reflecting changes in the composition of 5-digit industries engaged in

trade (i.e. industrial change) rather than productivity. Following the same framework in Equation

(1), we instead employ this 2-digit water intensity as the dependent variable to investigate whether

countries with abundant water resources adjust their exports toward water-intensive industries.

Table 5 reports the estimation results and we focus on Column 2 for interpretation. Controlling

for water intensity, a one-unit increase in precipitation per capita (equivalent to a 21% increase)

leads to a 0.019 unit (or 133%) increase in water intensity resulting from sectoral changes in trade.

The elasticities of sectoral water intensity with respect to precipitation is 0.1 on average. The

response is larger in the “Food and live animals” industry, with the elasticity being 0.38. The

results are robust to different specifications. In sum, the findings in Tables 8 and 9 show that

changes in relative precipitation lead to adjustments in the composition of industries engaged in

trade.
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5.3 Transport Disruption

Marine transport accounts for 80% of world trade by volume (WTO, 2022). Key transport corridors

and infrastructures can be affected by changes in water resources, potentially creating vulnerabil-

ities in the global trade network. One the one hand, severe droughts lower water levels. Shallow

water forces cargo ships to operate at lower capacity in order to navigate and transport commodi-

ties, causing significant congestion and delays around ports. This is highlighted in the recent severe

delay in the Panama Canal, which is responsible for moving 40% of the world’s cargo ship traffic,

due to a historical drought in the area around the canal.12 On the other hand, floods directly dam-

age critical infrastructure, including roads, bridges and ports, which hurt firm productivities and

disrupt global value chains.

This section examines the effects of water resources on transport by estimating the effects of

precipitation on trade logistics performance index (LPI). Figure A6 shows the relationship between

precipitation and LPI. As precipitation increase, the logistics performance first improves and then

worsens. This analysis provides some initial evidence that both droughts and floods disrupt a

country’s port logistics performance. Table 6 shows the regression results with the dependent

variable being LPI. To flexibly capture the nonlinear relationship between precipitation and LPI

as shown in Figure A6, we implement a spline function with the knot at the 25% quantile of

precipitation. Our findings are robust when gradually including control variables and region by

year fixed effects.

Two findings emerge from Column 3. First, at the left distribution of precipitation (0-25%), a

one-meter decrease in precipitation (925%) reduces logistics performance by 2.2 units (74%). The

findings are consistent with the World Trade Report (2022) that recurrent droughts in recent years

have frequently lowered water levels, diminishing the weight barges can carry, causing congestion

and delays in the Paraná River, which transports 90% of Paraguay’s international trade of agricul-

tural goods.13 Second, at the right distribution of precipitation (25%-100%), a one-meter increase

12See the report on the delay by the NPR here: https://www.npr.org/2023/08/27/1196219611/a-historic-drought-is-
causing-a-huge-traffic-jam-at-the-panama-canal.

13https://www.wto.org/english/res_e/publications_e/wtr22_e.htm
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in precipitation (925%) decreases logistics performance by 0.35 units (12%). Since this estimate

is not significant at the conventional level, the results are suggestive and should be interpreted with

caution.

6 Long-run Projections

This section projects the long-run impact of relative precipitation on trade flows. A key challenge

is that the short-run effects of precipitation may not fully account for adaptation to future climate

change. Adaptation could take place through a variety of human behavior adjustments. To capture

adaptation, our strategy follows the recent studies that account for the role of adaptation in predict-

ing future climate impacts on various outcomes including energy demand, mortality and household

consumption (Auffhammer, 2022; Carleton et al., 2022; Heutel et al., 2021; Lai et al., 2022). Our

model allows the main effect of precipitation and the HO interaction effect to evolve based on the

water endowment. We estimate the following equation:
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where the RPreci jt represents relative precipitation per capita between exporter i and importer j

at time t. EDi j is a proxy of relative strength in water endowment in the long term. Specifically,

it is measured using the average relative precipitation per capita during a 30-year period between

exporters and importers from 1970 to 1999. The assumption is that the long-term water endowment

affects the adaptive behavior through various channels. Intuitively, if the relative water endowment

of the US-China pair in the future converges to the US-Germany relative water endowment now, the

future precipitation effects between the US and China will follow the precipitation effects between

the US and Germany now. The relative water endowment enters Equation (2) in a non-parametric

form, accounting for the fact that adaptation behaviors may have an accumulating stage and take

place nonlinearly. Specifically, Is
(
EDi j]

)
is a dummy variable indicating the top 30%, middle 40%
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and bottom 30% of the relative strength in water endowment.

Table 7 shows the effect of relative precipitation on trade flows for the three levels of relative

water endowment. The results are robust to different fixed effects. We focus on the results in

column 2 for interpretation. The coefficient estimates for the interaction term between sectoral

water intensity and relative precipitation per capita show that the precipitation effects become

stronger when there are larger differences in water endowment between countries, suggesting that

the precipitation effects vary with the relative water endowment.

Next, we define two measures of future precipitation impacts on trade flows relative to the base

year 2015-2019, utilizing the estimated coefficients in Table 7 as well as the future precipitation

and water endowments. In the projection without adaptation, the change of trade flow in a future

year t relative to the base year 2015-2019 is:

∆ŷNoAdapt
i jkt = e f(RPreci jt ,WIk,15−19,EDi j,15−19;θ)− e f(RPreci j,15−19,WIk,15−19,EDi j,15−19;θ) (3)

In the projection with adaptation to water endowment, the change of trade flow in a future year t

relative to the base year 2015-2019 is:

∆ŷAdapt
i jkt = e f(RPreci jt ,WIk,15−19,EDi jt ;θ)− e f(RPreci j,15−19,WIk,15−19,EDi j,15−19;θ) (4)

Where EDi jt is the predicted relative water endowments, i.e., the 30-year moving average of pre-

cipitation per capita during year t −1 to t −30.

Figure 4B shows the projected changes in trade flows over time with adaptation in the RCP8.5

scenario (the business-as-usual scenario) at the global level.14 The blue line indicates increase in

trade among the exporter-importer pairs which would observed a growth in export compared to

the base year and the red line indicates reduction in trade among the exporter-importer pairs which

14Our main results focus on the case of adaptation because the projection of no adaptation and the projection of
adaptation are very close, as shown in Panel A in Figure A8. The findings are consistent with the pattern in Panel B
in Figure A1 that the relative precipitation in RCP8.5 and RCP4.5 scenarios are very close. The underlying reason is
that the measure of relative precipitation account for the interactions among countries, instead of precipitation changes
purely in each single country.
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would observed a drop in export relative to the base year. The grey line indicate the aggregate

effects among all country pairs. We find that trade gains gradually dominate the losses over time,

which is consistent with the trends of relative precipitation per capita over year in Figure A1.

The average annual trade gains and losses during 2080-2099 are $33 and -14 billion, respectively,

relative to the average during 2015-2019. In total, from 2080 to 2099, the trade gains and losses

are $660 and -280 billion, respectively, relative to the average during 2015-2019.

For the agricultural sector, the average annual trade gains and losses during 2080-2099 are

$11.2 and -1.1 billion, respectively, relative to the annual average during 2015-2019. Figure 6

reports the average precipitation effects on agricultural trade from 2080 to 2099 for each individual

country. First, Panel A shows that many countries in South America and East Asia, including Brazil

and China, experience gains in net exports in 2080-2099, relative to the average during 2015-2019.

In contrast, Australia and New Zealand experience losses in net exports. These patterns seem to run

counter to those in Figure 5, highlighting the important role of adaptation. Second, high-latitude

areas in the northern hemisphere, including America, Canada and many countries in Europe see

increase in exports during both 2000-2019 and 2080-2099, relative to their corresponding baseline

levels. Third, the impact on export is opposite to that on import in direction for most countries

but there are some exceptions. For example, India gains in both exports and imports but Australia

loses in both exports and imports.

The key driving forces underlying these comparisons between 2000-2019 and 2080-2099 are

relative changes in population, precipitation and existing trade networks. First, countries that gain

in 2000-2019 but lose in 2080-2099, such as Brazil and China, are usually those with fast popula-

tion growth recently but will experience population decline at the end of century. Therefore, rela-

tive precipitation per capita decreases in 2000-2019 but increases in 2080-2099, leading to exports

decrease during the first two decades of the century and then increase during the last two decades

of the century. For the same reason, many developed economies in the northern hemisphere are

slow in population changes both in 2000-2019 and 2080-2099, so the exports remain positive in

both periods. Second, relative changes in precipitation also play a key role. Take Australia-Canada
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pair for example. These two countries have a similar population growth in 2080-2099, relative to

the baseline 2015-2019, such that the trade flows in this pair are mainly driven by precipitation

changes. As indicated in Figure 1B, projected precipitation in 2080-2099 would decrease in Aus-

tralia but increase in Canada, hence the agricultural trade flows from Australia to Canada would

decrease by 1.2 million. In additional, since the net trade impact in one country is determined by

its trade with all its trading partners, some countries are projected to have gains (losses) in both

exports and imports, such as India (Australia).

To further understand the directions and magnitudes of changes in trade flows in Figure 4B, we

examine the predicted bilateral trade responses (in $10 million) for all sectors during 2080-2099

in Figure A4B. There are two differences from the changes during 2000-2019 depicted in Figure

A4A. First, more areas in Figure A4B are in blue, indicating the trade gains surpassing the losses

over time. Second, “South Asia (SA)”, ECA and EAP continue to increase exports to “Middle

East and North Africa”. The magnitudes increase by nearly 10 folds by the end of the century.

Meanwhile, SA and “North America (NA)” maintain similar losses in exports to ECA.

Uncertainty. Uncertainty is inherent in future projections of climate impacts so the projected

average impacts should be interpreted with caution. There are three sources of uncertainty: regres-

sion uncertainty, emission uncertainty, and climate uncertainty (Burke et al., 2015a). Regression

uncertainty stems from the econometric estimates of response functions using historical data, i.e.,

uncertainty in the regression coefficients. Emission uncertainty refers to the imperfect knowl-

edge in the future trajectory of anthropogenic activities that might affect the climate system (e.g.,

RCP4.5 or RCP8.5). Climate uncertainty refers to the uncertainty in how the climate system re-

sponds to a given level of emissions. There is an ensemble of 21 GCMs typically used in national

and international climate assessments.

To account for regression uncertainty, we follow the procedure in Carleton et al. (2022) and

Hsiang (2010) to randomly draw a set of parameters 200 times, from a multivariate normal distri-

bution characterized by the covariance matrix for the parameter estimates in Equation (2). Next,

we construct a predicted response function by combining these parameter draws with the median
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values of precipitation and climate provided by 21 climate projections. Last, we take the 2.5th and

97.5th percentiles from the distribution of the outcomes to construct the 95% confidence interval.

This is how we obtain the confidence intervals (grey areas) in Figure 4B.

To account for emission uncertainty, we report results under both RCP4.5 and RCP8.5 scenar-

ios. Panel B in Figure A8 shows the projected trade changes in 2020-2099 in the cases of adaptation

under climate scenarios of RCP4.5 and RCP8.5. The results from scenarios RCP4.5 and RCP8.5

are very close. Therefore, our main findings focus on the case of adaptation in RCP8.5.

To account for climate uncertainty, we discuss our key results using the 25th and 75th percentile

values of precipitation and climate variables provided by 21 climate projections in Panel C in

Figure A8. The global aggregate trade changes using 25th and 75th quantile values are in the same

order of magnitudes with the main results based on median values of precipitation and climate.

Specifically, global trade changes in 2080-2099 are projected to be $29, $19 and $12 billion for

the 25th, 50th and 75th quantiles of precipitation and climate variables, respectively. Overall, our

findings under different climate scenarios are largely comparable.

7 Conclusions

This paper examines the effects of water resources on international trade at a global scale. By

exploiting the time variation in precipitation and sectoral bilateral trade flows, our analysis shows

that relative abundance in water resources between the origin and destination countries is a crucial

factor in determining a country’s comparative advantage: water-abundant countries export more in

sectors with a high water intensity while water-scarce countries import more in those sectors. We

show that changes in water resources affect trade flows through at least three channels: productiv-

ity, trade structure, and transport. Based on climate projections, we estimate the long-run effects

of relative water resources on trade flows by the end of century, and find substantial heterogeneity

in the impacts across regions. The results indicate that the net global trade is likely to increase as

a result of the changes in the spatial distribution of water resources from 2020 to 2099.

Our findings suggest that although climate shocks will continue to be costly and disruptive,

30



trade could aid countries in enhancing their long-term preparedness and response, ultimately re-

sulting in increased resilience against localized shocks. Nonetheless, when water is undervalued,

particularly with the widespread water subsidies, whether implicit or explicit, trade may not pro-

vide an effective solution to the challenge of water scarcity.

While our analysis is conducted at the country level, recent studies have shown that using

aggregated statistical models might underestimate the impact of precipitation due to the large cross-

region heterogeneity within a country (Damania et al., 2020; Lobell and Asseng, 2017). To account

for within-country variation in precipitation, future analysis on the impact of water resources on

trade could leverage more granular trade data at the subnational level, where available.
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Figure 1: Changes (%) in precipitation by country
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Notes: This figure shows the average annual changes (%) in precipitation by country in 2000-2019 and 2080-2099
in RCP8.5 scenario. Panel A shows the changes (%) in precipitation in 2000-2019, relative to the annual average in
1995-1999. Panel B shows the changes (%) in precipitation in 2080-2099, relative to the annual average in 2015-2019.
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Figure 2: Changes (%) in precipitation per capita by regions over year
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Notes: This figure shows the average annual changes (%) in precipitation by region over year. Panel A shows the
changes (%) in precipitation in 2000-2019, relative to the annual average in 1995-1999. Panel B shows the changes
(%) in precipitation in 2020-2099, relative to the annual average in 2015-2019 under the RCP8.5 (business-as-usual)
scenario.
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Figure 3: The effects of relative precipitation on trade by industry

Notes: This figure shows the elasticities of trade flows with respect to relative precipitation per capita by 2-digit SITC
industries from Equation (1). The grey bar shows the 95% confidence interval.
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Figure 4: Projected trade changes
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Notes: Panel A shows the predicted global trade flows driven by precipitation changes in 2000-2019, relative to
the trade flows in 1995-1999, by combining the estimated coefficients in Equation (1) and the actual changes in
precipitation across the countries. Panel B shows the predicted trade flows driven by precipitation changes in 2020-
2099, combining the estimated coefficients in Equation (2) and the projected changes in precipitation in the case of
adaptation under RCP8.5. The blue line indicates the gains in trade; the red line indicate the losses in trade; and the
grey line indicate the net effects. The grey areas are 95% confidence intervals.
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Figure 5: Projected agricultural trade changes (%) in each country, 2000-2019
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Notes: This figure shows the projected precipitation effects on agricultural trade flows from 2000 to 2019 for each
individual country, combining the estimated coefficients in Equation (1) and the actual changes in precipitation. Panels
A and B show the changes (%) for export and import, respectively.
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Figure 6: Projected agricultural trade changes (%) in each country, 2080-2099
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Notes: This figure shows the average precipitation effects on trade flows from 2080 to 2099 for each individual country,
combining the estimated coefficients in Equation (2) and the projected changes in precipitation under RCP8.5. Panels
A and B show the changes for export and import, respectively.
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Table 1: The effect of relative precipitation on trade flows
(1) (2) (3) (4)

Variables log(trade flow)

WaterIntensity * RPrec 2.0075*** 0.8735*** 0.8561*** 0.8802***
(0.5009) (0.2133) (0.2148) (0.2199)

RPrec 0.0094*** -0.0001
(0.0022) (0.0009)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.5554 0.6929 0.7048 0.7149
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes
Exporter by time FE Yes
Importer by time FE Yes
Industry by time FE Yes Yes
Exporter by industry FE Yes Yes
Importer by industry FE Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes
Importer by industry by time FE Yes

Notes: This table reports the effect of relative precipitation on trade flows from Equation (1). The unit of analysis is
exporter by importer by industry by each 5-year from 1995 to 2019. RPrec denotes relative precipitation per capita.
Columns 1-4 gradually increase the dimensions of fixed effects. Control variables include labor, capital and land as
well as their interactions with corresponding sectoral intensities. The standard errors in parentheses are clustered at
the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2: The effect of relative precipitation and absolute precipitation
(1) (2) (3) (4)

Variables log(trade flow)

WaterIntensity * RPrec 1.8190*** 0.8771*** 0.9079*** 0.8826***
(0.4753) (0.2137) (0.2171) (0.2187)

RPrec 0.0093*** -0.0002 -0.0005 -0.0003
(0.0022) (0.0009) (0.0008) (0.0009)

WaterIntensity * Prec in exporter 1.9902* -0.8601 -1.3001
(1.0271) (0.8304) (0.8792)

Prec in exporter 0.0089*
(0.0053)

WaterIntensity * Prec in importer -0.0015** -0.0017* -0.1042
(0.0006) (0.0010) (0.2367)

Prec in importer 0.0040***
(0.0002)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.5555 0.6929 0.6959 0.7000
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes Yes Yes
Exporter by time FE Yes Yes No
Importer by time FE Yes No Yes
Industry by time FE Yes Yes Yes
Exporter by industry FE Yes Yes No
Importer by industry FE Yes No Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes No
Importer by industry by time FE No Yes

Notes: This table compares the effects between relative precipitation and absolute precipitation from estimating Equa-
tion (1). The outcome variable is trade flows in logarithms. The unit of analysis is exporter by importer by industry
by each 5-year from 1995 to 2019. RPrec denotes relative precipitation per capita between the exporting and import-
ing countries while Prec denote (absolute) precipitation per capita in the exporting country. Columns 1-4 gradually
increase the dimensions of fixed effects. Control variables include labor, capital and land as well as their interactions
with corresponding sectoral intensities. The standard errors in parentheses are clustered at the exporter by importer
level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3: The effect of precipitation on production and TFP
(1) (2) (3) (4)

log(value added per capita)
Variables Agriculture Industry
Panel A
Prec 0.117*** 0.297*** 0.139** 0.231*

(0.035) (0.066) (0.066) (0.139)
Prec * Prec -0.023*** -0.012

(0.006) (0.012)

Observations 3,402 3,402 3,275 3,275
Adjusted R2 0.981 0.982 0.962 0.962

Agri TFP Agri TFP growth rate
Panel B
Prec 4.072* 6.981 0.0087* 0.0353**

(2.262) (5.898) (0.0052) (0.0139)
Prec * Prec -0.458 -0.0042**

(0.669) (0.0016)

Observations 4,235 4,235 4,183 4,183
Adjusted R2 0.578 0.578 0.014 0.015
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Notes: This table examines the precipitation effects on production and total factor productivity in panel A and panel B,
respectively. The unit of analysis is country by year from 1999 to 2019 in Panel A and from 1995 to 2019 in Panel B.
Prec denotes precipitation per capita. Columns 1 and 3 report the linear effects and Columns 2 and 4 report the quadric
effects. The dependent variables from Columns 1-2 and Columns 3-4 in panel A are agricultural and industrial value
added per capita in logarithms, respectively; the dependent variables from Columns 1-2 and Columns 3-4 in panel A
are agricultural TFP and agricultural TFP growth rate, respectively. The standard errors in parentheses are clustered at
the country level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: The effect of relative precipitation on the number of trade industries
(1) (2) (3) (4)

Number of Industries
Variables SITC level 2 SITC level 5

RPrec -0.024** -0.028*** -0.929*** -1.053***
(0.009) (0.010) (0.265) (0.287)

Observations 159,036 159,036 159,036 159,036
Adjusted R2 0.669 0.682 0.604 0.614
Other inputs Yes Yes Yes Yes
Exporter FE Yes Yes
Importer FE Yes Yes
Time FE Yes Yes
Exporter by time FE Yes Yes
Importer by time FE Yes Yes

Notes: This table reports the effects of relative precipitation on the existing number of industries in trade. The depen-
dent variable, the number of industries, is obtained by counting the unique industry identifier in each exporter-importer
pair. The unit of analysis is exporter by importer by each 5-year from 1995 to 2019. RPrec denotes relative precipita-
tion per capita. Columns 1 and 2 use the digit-2 SITC industries and columns 3 and 4 use the digit-5 SITC industries.
Columns 1 and 3 include exporter FE, importer FE and time FE; columns 2 and 4 include exporter-by-time FE and
importer-by-time FE. Control variables include relative labor, capital and land. The standard errors in parentheses are
clustered at the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: The effect of relative precipitation on average water intensity
(1) (2) (3) (4)

Variables Time varying water intensity

WaterIntensity * RPrec 0.0874*** 0.0185** 0.0196** 0.0197**
(0.0159) (0.0076) (0.0077) (0.0078)

RPrec 0.0000 0.0000
(0.0000) (0.0000)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.5488 0.6576 0.6596 0.6781
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes
Exporter by time FE Yes
Importer by time FE Yes
Industry by time FE Yes Yes
Exporter by industry FE Yes Yes
Importer by industry FE Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes
Importer by industry by time FE Yes

Notes: This table explores how the adjustment of industries is correlated with industrial water intensity by estimating
the effects of relative precipitation on the average water intensity. The unit of analysis is exporter by importer by
industry by each 5-year from 1995 to 2019. RPrec denotes relative precipitation per capita. The water intensity varies
by exporter, importer, industry and year. The variation is purely driven by the industry compositional change in trade,
instead of productivity changes. Columns 1-4 gradually increase the dimensions of fixed effects. Control variables
include labor, capital and land as well as their interactions with corresponding sectoral intensities. The standard errors
in parentheses are clustered at the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: The effects of precipitation on logistics performance
(1) (2) (3)

Variables Logistics performance index

Prec * I(Prec 0-25%) 2.083** 2.242*** 2.156**
(0.844) (0.839) (0.893)

Prec * I(Prec 25-100%) -0.235 -0.196 -0.351
(0.326) (0.327) (0.375)

Observations 715 715 715
Adjusted R2 0.909 0.909 0.908
Controls No Yes Yes
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Region by year FE No No Yes

Notes: This table reports the effects of precipitation on logistics performance. The dependent variable, logistics
performance index, is obtained from the World Bank Logistics Performance Survey. The unit of analysis is country
by year from 2007 to 2018. Prec denotes precipitation per capita. Columns 1-3 gradually include control variables
and region by year fixed effects. Control variables include temperature bins. The standard errors in parentheses are
clustered at the country level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: The effect of relative precipitation on trade flows by water endowment
(1) (2) (3) (4)

Variables log(trade flow)

WaterIntensity * RPrec * I(ED 0-30%) 2.5779** 0.3712 0.3880 0.4548
(1.2082) (0.5090) (0.5077) (0.5126)

RPrec * I(ED 0-30%) -0.2006** -0.0557
(0.0944) (0.0427)

WaterIntensity * RPrec * I(ED 30-70%) 2.0147*** 0.6247** 0.6198** 0.6638**
(0.5929) (0.2805) (0.2807) (0.2958)

RPrec * I(ED 30-70%) 0.0039 0.0080
(0.0191) (0.0077)

WaterIntensity * RPrec * I(ED 70-100%) 2.0283*** 0.9297*** 0.9108*** 0.9214***
(0.6194) (0.2215) (0.2228) (0.2225)

RPrec * I(ED 70-100%) 0.0095*** -0.0002
(0.0021) (0.0009)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.5554 0.6929 0.7048 0.7149
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes
Exporter by time FE Yes
Importer by time FE Yes
Industry by time FE Yes Yes
Exporter by industry FE Yes Yes
Importer by industry FE Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes
Importer by industry by time FE Yes

Notes: This table reports the effects of relative precipitation on trade flows by water endowment. The unit of analysis
is exporter by importer by industry by each 5-year from 1995 to 2019. RPrec denotes relative precipitation per capita.
Water endowment is the 30 years’ average relative precipitation per capita between exporters and importers from 1970
to 1999. Water endowment enters the equation as three dummy variables indicating the top 30%, middle 40% and
bottom 30% of the relative strength in water endowment. Columns 1-4 gradually increase the dimensions of fixed
effects. Control variables include labor, capital and land as well as their interactions with corresponding sectoral
intensities. The standard errors in parentheses are clustered at the exporter by importer level. *** p < 0.01, **
p < 0.05, * p < 0.1.

47



Appendix

Figure A1: Changes (%) of relative precipitation per capita over year
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Notes: This figure shows the changes (%) of relative precipitation per capita over year. Panel A shows the changes (%)
of relative precipitation per capita in 2000-2019, relative the annual average in 1995-1999. Panel B shows the changes
(%) of relative precipitation per capita in 2020-2099, relative the annual average in 2015-2019 in both RCP4.5 and
RCP8.5 scenarios.
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Figure A2: Changes (%) of relative precipitation per capita by region
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Notes: This figure shows the bilateral average annual changes (%) in precipitation by region during 2000-2019 and
2080-2099. Panel A shows the bilateral changes (%) in precipitation during 2000-2019, relative to the annual average
during 1995-1999. Panel B shows the bilateral changes (%) in precipitation during 2080-2099, relative to the annual
average during 2015-2019, under the RCP8.5 scenario.
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Figure A3: Correlation between trade and comparative advantage of water
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(A) Residualized correlation
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(B) Residualized correlation by water intensity

Notes: This figure shows the correlation between trade and comparative advantage of water using the sectoral bilateral
trade data from 1995 to 2019 on a 5-year basis. Comparative advantage of water is defined as the interaction between
relative precipitation and water intensity. The y-axis is the residuals obtained from regressing logarithmic trade value
on various fixed effects in Equation (1). The x-axis is the residuals obtained from regressing comparative advantage of
water on various fixed effects in Equation (1). Industries with high water intensity include the sectors of “food and live
animals”, “Beverages and tobacco”, “Crude materials, inedible” and “Mineral fuels etc”. Industries with low water
intensity include the other sectors.
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Figure A4: The overall effects of relative precipitation on trade by region
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(B) 2080-2099

Notes: Panel A shows the predicted annual average changes in bilateral trade flows driven by changes in relative
precipitation between two regions during 2000-2019, relative to the average during 1995-1999. Panel B shows the
predicted annual average changes in bilateral trade flows driven by changes in relative precipitation between two
regions in 2080-2099, relative to the average during 2015-2019, under RCP 8.5. The directions of trade are from
the vertical regions (exporters) to the horizontal regions (importers). The diagonal cells represents the trade response
within regions while the non-diagonal cells between regions. Blue color is associated with positive numbers while
the red indicates negative numbers, indicating increases and decreases in trade flows, respectively. Summing up all
columns in each row produces the changes in overall exports from the row regions; Summing up all rows in each
column produces the changes in overall imports to the column regions.
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Figure A5: The gains and losses in trade by region, 2000-2019
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(B) Negative effects

Notes: This figure shows the predicted annual average changes in bilateral trade flows driven by precipitation between
two regions in 2000-2019, relative to year 1995-1999. Panel A sums up the positive changes in trade flows in each
exporter-importer-industry-year observation. Panel B sums up the negative changes in trade flows in each exporter-
importer-industry-year observation. Combining each grids in Panel A and B produces the grids in Figure 8. The
directions of trade are from the vertical regions (exporters) to the horizontal regions (importers). The diagonal (non-
diagonal) represents the trade response within (between) regions. Summing up all columns in each row produces the
changes in overall exports from the row regions; Summing up all rows in each column produces the changes in overall
imports to the column regions.
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Figure A6: The relationship between precipitation and logistics performance index
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Notes: This figure shows the relationship between precipitation and logistics performance index. Logistics perfor-
mance index, is obtained from the World Bank Logistics Performance Survey. Precipitation is obtained from extracting
the value in the ERA5 grid in which the ports locate. The grey bars represent the distribution of precipitation.
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Figure A7: The effects of precipitation on water resources
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Notes: This figure shows the effects of precipitation per capita on terrestrial water change per capita from estimating
the following equation: dTWSit = ∑

9
2 γb1 PrecBin it +∑

9
2 γb2 TempBin it + τi + δt + µrt + vit , where dTWS measures

the z-score of the annual changes in terrestrial water storage per capita in country i from year t −1 to t. PrecBin is a
vector of precipitation bins for each 10 thousands m3 precipitation per capita. PrecBin equals one if the precipitation
per capita falls into the bth precipitation bin and zero otherwise. The bin with the least precipitation (the first bin) is
set as the reference group. Similarly, TempBin is a vector of 5 degree Fahrenheit temperature bins. τi is the country
fixed effects, controlling for time-invariant confounders such as geographical conditions. δt is the year fixed effects,
controlling for common trends in the hydrographical cycle. µrt is the region by year fixed effects, controlling for the
time-varying factors in each region by year. The blue line is the step function and the red line is the quadric function.
The grey area shows the 95% confidence interval.
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Figure A8: Projected trade changes in 2020-2099
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(A) With and without adaptation in RCP8.5
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(B) Adaptation in RCP4.5 and RCP8.5
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(C) Adaptation in RCP8.5, quantile 75 and 25

Notes: This figure shows the predicted trade flows due to precipitation changes in 2020-2099 at the global level based
on the estimated coefficients in Equation (2) and the actual changes in precipitation. The blue line indicates the gains
from trade and the red line the losses from trade. The grey line indicates the net effects. Panel A shows the cases of
with and without adaptation in RCP8.5. Panel B shows the cases of adaptation in RCP4.5 and RCP8.5. Panel C shows
the cases of adaptation in RCP8.5 using the 75th and 25th of the projected precipitation from 21 GCMs.
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Table A1: Summary statistics
(1) (2) (3) (4) (5)

Variables Obs. Mean Std. Dev. Min. Max.
Trade
Trade flow (thousand dollars) 3,441,109 6420.6 32228 0.0010 528332.7

Relative inputs
RPrec, relative precipitation (ratio) 3,441,109 4.728 14.547 0.0000 194.481
RLabor, relative labor (ratio) 3,441,109 2.017 2.699 0.0029 76.106
RCapital, relative capital (ratio) 3,441,109 3.985 8.635 0.0020 204.138
RLand, relative land (ratio) 3,441,109 4.492 21.824 0.0000 3104.950

Input intensities
Water intensity (ratio) 3,441,109 0.016 0.052 0.0000 0.465
Labor intensity (ratio) 3,441,109 0.387 0.106 0.0924 0.645
Capital intensity (ratio) 3,441,109 0.829 0.409 0.2396 3.568
Land intensity (ratio) 3,441,109 0.019 0.043 0.0000 0.245

Notes: This table reports the summary statistics. The unit of analysis is exporter by importer by industry by 5-year
period. The data range from 1995 to 2019. Relative inputs are defined by dividing the input per capita in the exporter
by the input per capita in the importer. Water intensity is measured as the ratio of the cost of water use over value added
plus the cost of water use. Skill intensity is the wage share of nonproduction workers to the total. Capital intensity is
the sectoral capital stock divided by the value added in each sector. Land intensity is measured as the ratio of land use
to total factor use for a sector.
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Table A2: Robustness tests on the zero trade
(1) (2) (3) (4)

Variables Trade flow with zero value

WaterIntensity * RPrec 2.1680*** 0.7965*** 0.8332*** 0.8815***
(0.6021) (0.2387) (0.2336) (0.2655)

RPrec 0.0046*** 0.0018**
(0.0015) (0.0008)

Observations 9,365,871 9,365,871 9,365,871 9,365,871
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes
Exporter by time FE Yes
Importer by time FE Yes
Industry by time FE Yes Yes
Exporter by industry FE Yes Yes
Importer by industry FE Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes
Importer by industry by time FE Yes

Notes: This table assesses the robustness of our results to the zero-trade issue by including the observations with zero
trade. We follow Silva and Tenreyro (2006) by estimating the Poisson model with the dependent variable specified as
trade flows in levels rather than in logarithms. The unit of analysis is exporter by importer by industry by each 5-year
from 1995 to 2019. RPrec denotes relative precipitation per capita. Columns 1-4 gradually increase the dimensions
of fixed effects. Control variables include labor, capital and land as well as their interactions with corresponding
sectoral intensities. The standard errors in parentheses are clustered at the exporter by importer level. *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table A3: Robustness tests of alternative water intensity
(1) (2) (3) (4)

log(trade flow)

Variables
Direct &

indirect, blue
Direct, green

& blue

Direct &
indirect, green

& blue
Average

WaterIntensity * RPrec 0.6864*** 0.1782*** 0.0656*** 0.0548***
(0.1733) (0.0522) (0.0158) (0.0126)

RPrec -0.0001 -0.0010 -0.0007 -0.0009
(0.0009) (0.0009) (0.0009) (0.0009)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.6929 0.6929 0.6929 0.6929
Other inputs Yes Yes Yes Yes
Exporter by importer FE Yes Yes Yes Yes
Exporter by time FE Yes Yes Yes Yes
Importer by time FE Yes Yes Yes Yes
Industry by time FE Yes Yes Yes Yes
Exporter by industry FE Yes Yes Yes Yes
Importer by industry FE Yes Yes Yes Yes
Exporter by importer by time FE Yes Yes Yes Yes
Exporter by industry by time FE Yes Yes Yes Yes
Importer by industry by time FE Yes Yes Yes Yes

Notes: This table assesses the robustness of our results to alternative measures of water intensities. The outcome
variable is trade flows in logarithms. The unit of analysis is exporter by importer by industry by each 5-year from
1995 to 2019. RPrec denotes relative precipitation per capita. Columns 1 focuses on the direct and indirect water as
well as the blue water. Column 2 uses direct water as well as the green and blue water. Column 3 uses the direct
and indirect water as well as green and blue water. Column 4 takes the average of the previous four measures of
water intensities. Control variables include labor, capital and land as well as their interactions with corresponding
sectoral intensities. The standard errors in parentheses are clustered at the exporter by importer level. *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table A4: Robustness tests of alternative water resources
(1) (2) (3) (4) (5) (6)

Variables log(trade flow)

WaterIntensity * RPrec 0.7769*** 0.8953*** 0.7069*** 0.6941*** 0.8907*** 1.0812***
(0.2434) (0.2287) (0.1581) (0.1625) (0.2609) (0.3182)

RPrec 0.0012 -0.0002 0.0002 0.0013
(0.0013) (0.0005) (0.0010) (0.0013)

Observations 3,441,109 3,441,109 3,441,109 3,441,109 2,803,268 1,931,586
Adjusted R2 0.6929 0.7149 0.6929 0.7149 0.6984 0.7023
Other inputs Yes Yes Yes Yes Yes Yes
Exporter by importer FE Yes Yes Yes Yes
Exporter by time FE Yes Yes Yes Yes
Importer by time FE Yes Yes Yes Yes
Industry by time FE Yes Yes Yes Yes
Exporter by industry FE Yes Yes Yes Yes
Importer by industry FE Yes Yes Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes Yes
Importer by industry by time FE Yes Yes

Notes: This table assesses the robustness of our results to alternative measures of water resources. The outcome variable
is trade flows in logarithms. The unit of analysis is exporter by importer by industry by each 5-year from 1995 to 2019.
RPrec denotes relative precipitation per capita. Columns 1 and 2 use the population in 1994, the year before our data start, to
construct the precipitation per capita. Columns 3 and 4 use the unweighted precipitation when aggregating the precipitation
at the 30 km resolution to the country level. Columns 5 and 6 exclude country pairs with the size of either exporters or
importers less than 10% or 25% of the country size distribution (9 or 54 thousand square kilometer), respectively. Control
variables include labor, capital and land as well as their interactions with corresponding sectoral intensities. The standard
errors in parentheses are clustered at the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A5: Robustness tests of alternative model specifications and measurement
(1) (2) (3)

Variables log(trade flow) trade log(quantity)

WaterIntensity * RPrec 0.8974*** 9,129.29** 0.8867***
(0.2110) (4,079.16) (0.2521)

RPrec -0.0001 -31.252** 0.0002
(0.0008) (13.944) (0.0011)

Observations 3,441,109 3,441,109 3,441,109
Adjusted R2 0.6928 0.4199 0.6903
Other inputs No Yes Yes
Exporter by importer FE Yes Yes Yes
Exporter by time FE Yes Yes Yes
Importer by time FE Yes Yes Yes
Industry by time FE Yes Yes Yes
Exporter by industry FE Yes Yes Yes
Importer by industry FE Yes Yes Yes

Notes: This table assesses the robustness of our results to alternative model specifications and measurements. The unit
of analysis is exporter by importer by industry by each 5-year from 1995 to 2019. RPrec denotes relative precipitation
per capita. Column 1 removes all other inputs as control variables. Column 2 uses the level of trade as the dependent
variable. Column 3 uses the trade quantity in logarithms as the dependent variables. Control variables include labor,
capital and land as well as their interactions with corresponding sectoral intensities. The standard errors in parentheses
are clustered at the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A6: The effect of different inputs on trade flows
(1) (2) (3) (4)

Variables log(trade flow)

WaterIntensity * RPrec 0.0178*** 0.0077*** 0.0076*** 0.0078***
(0.0044) (0.0019) (0.0019) (0.0019)

RPrec 0.0377*** -0.0006
(0.0088) (0.0034)

LaborIntensity * RLabor 0.0547*** 0.0003 -0.0025 -0.0012
(0.0127) (0.0068) (0.0079) (0.0098)

RLabor -0.0512*** 0.0167**
(0.0129) (0.0065)

CapitalIntensity * RCapital 0.0478*** -0.0203*** -0.0193*** -0.0227***
(0.0094) (0.0063) (0.0065) (0.0067)

RCapital -0.0722*** 0.0089
(0.0147) (0.0077)

LandIntensity * RLand 0.0136** 0.0018 0.0018 0.0006
(0.0063) (0.0020) (0.0020) (0.0021)

RLand -0.0077 -0.0001
(0.0048) (0.0013)

Observations 3,441,109 3,441,109 3,441,109 3,441,109
Adjusted R2 0.5554 0.6929 0.7048 0.7149
Other inputs Yes Yes Yes Yes
Industry FE Yes
Time FE Yes
Exporter by importer FE Yes Yes
Exporter by time FE Yes
Importer by time FE Yes
Industry by time FE Yes Yes
Exporter by industry FE Yes Yes
Importer by industry FE Yes Yes
Exporter by importer by time FE Yes Yes
Exporter by industry by time FE Yes
Importer by industry by time FE Yes

Notes: This table reports the effect of relative precipitation on trade flows from estimating Equation (1). All right-hand-
side variables are normalized (z score) such that the coefficients among different inputs can be compared. The unit of
analysis is exporter by importer by industry by each 5-year from 1995 to 2019. RPrec, RLabor, RCapital and RLand
denote per capita measures of relative precipitation, relative labor, relative capital and relative land, respectively.
Column 1 includes the fixed effects similar with the main model in Debaere (2014) and the findings are largely
consistent. Specifically, all interactions (precipitation, labor, capital and land) are significantly positive, suggesting all
inputs are key determinants of comparative advantages. The marginal effects of precipitation and land are close; the
marginal effects of labor and capital are close; the marginal effects of labor and capital are about three times as large
as those of precipitation and land. However, after Columns 2-4 gradually increase the dimensions of fixed effects, the
effects of precipitation remain robust but the effects of other inputs are not stable. The instability in the coefficients
of other inputs is likely due to insufficient variation conditional on various fixed effects. The findings are consistent
with Cai and Stoyanov (2016) that, after the utilize the time variation to estimate the Rybczynski effects of aging, the
coefficients in front of labor interaction and capital interaction become unstable. The standard errors in parentheses
are clustered at the exporter by importer level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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